
pymssql Documentation
Release 2.1.4

pymssql developers

Aug 28, 2018

Contents

1 Introduction 1
1.1 Getting started . 1
1.2 Architecture . 2
1.3 Supported related software . 3
1.4 Install . 3
1.5 Project Discussion . 3
1.6 Project Status . 4
1.7 Current Development . 4

2 pymssql examples 5
2.1 Basic features (strict DB-API compliance) . 5
2.2 Connecting using Windows Authentication . 6
2.3 Iterating through results . 6
2.4 Important note about Cursors . 6
2.5 Rows as dictionaries . 7
2.6 Using the with statement (context managers) . 7
2.7 Calling stored procedures . 8
2.8 Using pymssql with cooperative multi-tasking systems . 8

3 _mssql examples 9
3.1 Quickstart usage of various features . 9
3.2 An example of exception handling . 10
3.3 Custom message handlers . 11

4 Release notes 13
4.1 pymssql 2.0.0 . 13

5 FreeTDS 15
5.1 Installation . 15
5.2 Configuration . 16

6 pymssql module reference 19
6.1 Module-level symbols . 19
6.2 Functions . 20
6.3 Connection class . 22
6.4 Cursor class . 23
6.5 Exceptions . 24

i

7 _mssql module reference 27
7.1 Module-level symbols . 27
7.2 Functions . 27
7.3 MSSQLConnection class . 28
7.4 MSSQLStoredProcedure class . 32
7.5 Module-level exceptions . 33

8 Migrating from 1.x to 2.x 35
8.1 str vs. unicode . 35
8.2 Handling of uniqueidentifier columns . 36
8.3 Arguments to pymssql.connect . 36
8.4 Parameter substitution . 37

9 Frequently asked questions 39
9.1 Cannot connect to SQL Server . 39
9.2 Returned dates are not correct . 41
9.3 Queries return no rows . 41
9.4 Results are missing columns . 42
9.5 pymssql does not unserialize DATE and TIME columns to datetime.date and datetime.time

instances . 43
9.6 Shared object “libsybdb.so.3” not found . 43
9.7 “DB-Lib error message 20004, severity 9: Read from SQL server failed” error appears 44
9.8 Unable to use long username and password . 44
9.9 More troubleshooting . 44

10 Building and developing pymssql 45
10.1 Building . 45
10.2 Testing . 48

11 FreeTDS and dates 49
11.1 Summary . 49
11.2 Details . 49

12 Connecting to Azure SQL Database 51

13 Docker 53

14 Change log 55

15 TODO 73
15.1 Documentation . 73

Python Module Index 75

ii

CHAPTER 1

Introduction

1.1 Getting started

Generally, you will want to install pymssql with:

pip install pymssql

Most of the times this should be all what’s needed.

• Linux

First make sure you are using pip version 8.1.0 or newer so you can take advantage of its support for PEP 513
Linux manylinux1 binary Wheel packages. Starting with pymssql version 2.1.3 we provide such wheel packages
that bundle a static copy of FreeTDS so no additional dependency download or compilation steps are necessary.

Then run:

pip install pymssql

it will fetch the package from the Python Package Index (PyPI) and install it.

Note: The statically-linked FreeTDS version bundled with our official pymssql Linux Wheel package doesn’t
have SSL support so it can’t be used to connect to Azure. Also it doesn’t have Kerberos support so it can’t be
used to perform domain logins to SQL Server.

• Mac OS X

(with Homebrew):

Run:

brew install freetds
pip install pymssql

it will fetch the source distribution from the Python Package Index (PyPI), build and install pymssql.

1

https://pip.pypa.io
https://www.python.org/dev/peps/pep-0513
https://pypi.python.org
http://www.freetds.org/userguide/domains.htm
http://brew.sh/
https://pypi.python.org

pymssql Documentation, Release 2.1.4

• Windows

First make sure you are using pip version 6.0 or newer so you can take advantage of its support for Windows
binary Wheel packages. Starting with pymssql version 2.1.3 we provide such wheel packages that bundle a
static copy of FreeTDS so no additional download or compilation steps are necessary.

Then run:

pip install pymssql

it will fetch the package from the Python Package Index (PyPI) and install it.

Note: The statically-linked FreeTDS version bundled with our official pymssql Windows Wheel package
doesn’t have SSL support so it can’t be used to connect to Azure.

See Installation and FreeTDS for more advanced scenarios.

Docker

(Experimental)

Another possible way to get started quickly with pymssql is to use a Docker image.

1.2 Architecture

The pymssql package consists of two modules:

• pymssql – use it if you care about DB-API compliance, or if you are accustomed to DB-API syntax,

• _mssql – use it if you care about performance and ease of use (_mssql module is easier to use than
pymssql).

2 Chapter 1. Introduction

https://pip.pypa.io
https://pypi.python.org

pymssql Documentation, Release 2.1.4

And, as of version 2.1.x it uses the services of the db-lib component of FreeTDS. See the relevant FreeTDS docu-
mentation for additional details.

1.3 Supported related software

Python Python 2.x: 2.7 or newer. Python 3.x: 3.3 or newer.

FreeTDS 0.91 or newer.

Cython 0.15 or newer.

Microsoft SQL Server 2005 or newer.

1.4 Install

Remember to install FreeTDS first.

1.4.1 pip

pip install pymssql

will install pymssql from PyPI. This PyPI page contains:

• source distribution (.tar.gz)

• wheels (.whl) for Windows

FreeTDS is required. On some platforms, we provide a pre-compiled FreeTDS to make installing easier, but you may
want to install FreeTDS before doing pip install pymssql if you run into problems or need features or bug
fixes in a newer version of FreeTDS. You can build FreeTDS from source if you want the latest. If you’re okay with
the latest version that your package manager provides, then you can use your package manager of choice to install
FreeTDS. E.g.:

• Ubuntu/Debian:

sudo apt-get install freetds-dev

• Mac OS X with Homebrew:

brew install freetds

1.5 Project Discussion

Discussions and support take place on pymssql mailing list here: http://groups.google.com/group/pymssql, you can
participate via web, e-mail or read-only subscribing to the mailing list feeds.

This is the best place to get help, please feel free to drop by and ask a question.

1.3. Supported related software 3

http://www.freetds.org/which_api.html
http://www.freetds.org/which_api.html
https://pypi.python.org/pypi/pymssql
http://www.freetds.org/
http://www.freetds.org/userguide/build.htm
http://brew.sh/
http://groups.google.com/group/pymssql

pymssql Documentation, Release 2.1.4

1.6 Project Status

Current release: 2.x is the branch under current development. It is a complete rewrite using Cython and the latest
FreeTDS libraries (which remove many of the limitations of previous versions of FreeTDS).

Legacy release: 1.0.3 is the legacy version and is no longer under active development.

Note: This documentation is for pymssql 2.x.

The document set you are reading describes exclusively the code base of pymssql 2.x and newer. All description of
functionality, workarounds, limitations, dependencies, etc. of older revisions has been removed.

If you need help for building/using pymssql 1.x please refer to the old Google Code documentation Wiki.

1.7 Current Development

Official development repositories and issue trackers have been moved to GitHub at https://github.com/pymssql/
pymssql.

We would be happy to have:

• A couple more developers

• Help from the community with maintenance of this documentation.

If interested, please connect with us on the mailing list.

4 Chapter 1. Introduction

https://code.google.com/p/pymssql/wiki/Documentation
https://github.com/pymssql/pymssql
https://github.com/pymssql/pymssql

CHAPTER 2

pymssql examples

Example scripts using pymssql module.

2.1 Basic features (strict DB-API compliance)

from os import getenv
import pymssql

server = getenv("PYMSSQL_TEST_SERVER")
user = getenv("PYMSSQL_TEST_USERNAME")
password = getenv("PYMSSQL_TEST_PASSWORD")

conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor()
cursor.execute("""
IF OBJECT_ID('persons', 'U') IS NOT NULL

DROP TABLE persons
CREATE TABLE persons (

id INT NOT NULL,
name VARCHAR(100),
salesrep VARCHAR(100),
PRIMARY KEY(id)

)
""")
cursor.executemany(

"INSERT INTO persons VALUES (%d, %s, %s)",
[(1, 'John Smith', 'John Doe'),
(2, 'Jane Doe', 'Joe Dog'),
(3, 'Mike T.', 'Sarah H.')])

you must call commit() to persist your data if you don't set autocommit to True
conn.commit()

cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')

(continues on next page)

5

pymssql Documentation, Release 2.1.4

(continued from previous page)

row = cursor.fetchone()
while row:

print("ID=%d, Name=%s" % (row[0], row[1]))
row = cursor.fetchone()

conn.close()

2.2 Connecting using Windows Authentication

When connecting using Windows Authentication, this is how to combine the database’s hostname and instance name,
and the Active Directory/Windows Domain name and the username. This example uses raw strings (r'...') for the
strings that contain a backslash.

conn = pymssql.connect(
host=r'dbhostname\myinstance',
user=r'companydomain\username',
password=PASSWORD,
database='DatabaseOfInterest'

)

2.3 Iterating through results

You can also use iterators instead of while loop.

conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor()
cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')

for row in cursor:
print('row = %r' % (row,))

conn.close()

Note: Iterators are a pymssql extension to the DB-API.

2.4 Important note about Cursors

A connection can have only one cursor with an active query at any time. If you have used other Python DBAPI
databases, this can lead to surprising results:

c1 = conn.cursor()
c1.execute('SELECT * FROM persons')

c2 = conn.cursor()
c2.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')

print("all persons")

(continues on next page)

6 Chapter 2. pymssql examples

https://docs.python.org/3/reference/lexical_analysis.html#string-and-bytes-literals

pymssql Documentation, Release 2.1.4

(continued from previous page)

print(c1.fetchall()) # shows result from c2 query!

print("John Doe")
print(c2.fetchall()) # shows no results at all!

In this example, the result printed after "all persons" will be the result of the second query (the list where
salesrep='John Doe') and the result printed after “John Doe” will be empty. This happens because the under-
lying TDS protocol does not have client side cursors. The protocol requires that the client flush the results from the
first query before it can begin another query.

(Of course, this is a contrived example, intended to demonstrate the failure mode. Actual use cases that follow this
pattern are usually much more complicated.)

Here are two reasonable workarounds to this:

• Create a second connection. Each connection can have a query in progress, so multiple connections can execute
multiple conccurent queries.

• use the fetchall() method of the cursor to recover all the results before beginning another query:

c1.execute('SELECT ...')
c1_list = c1.fetchall()

c2.execute('SELECT ...')
c2_list = c2.fetchall()

use c1_list and c2_list here instead of fetching individually from
c1 and c2

2.5 Rows as dictionaries

Rows can be fetched as dictionaries instead of tuples. This allows for accessing columns by name instead of index.
Note the as_dict argument.

conn = pymssql.connect(server, user, password, "tempdb")
cursor = conn.cursor(as_dict=True)

cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:

print("ID=%d, Name=%s" % (row['id'], row['name']))

conn.close()

Note: The as_dict parameter to cursor() is a pymssql extension to the DB-API.

2.6 Using the with statement (context managers)

You can use Python’s with statement with connections and cursors. This frees you from having to explicitly close
cursors and connections.

2.5. Rows as dictionaries 7

pymssql Documentation, Release 2.1.4

with pymssql.connect(server, user, password, "tempdb") as conn:
with conn.cursor(as_dict=True) as cursor:

cursor.execute('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in cursor:

print("ID=%d, Name=%s" % (row['id'], row['name']))

Note: The context manager personality of connections and cursor is a pymssql extension to the DB-API.

2.7 Calling stored procedures

As of pymssql 2.0.0 stored procedures can be called using the rpc interface of db-lib.

with pymssql.connect(server, user, password, "tempdb") as conn:
with conn.cursor(as_dict=True) as cursor:

cursor.execute("""
CREATE PROCEDURE FindPerson

@name VARCHAR(100)
AS BEGIN

SELECT * FROM persons WHERE name = @name
END
""")
cursor.callproc('FindPerson', ('Jane Doe',))
for row in cursor:

print("ID=%d, Name=%s" % (row['id'], row['name']))

2.8 Using pymssql with cooperative multi-tasking systems

New in version 2.1.0.

You can use the pymssql.set_wait_callback() function to install a callback function you should write your-
self.

This callback can yield to another greenlet, coroutine, etc. For example, for gevent, you could use its
gevent:gevent.socket.wait_read() function:

import gevent.socket
import pymssql

def wait_callback(read_fileno):
gevent.socket.wait_read(read_fileno)

pymssql.set_wait_callback(wait_callback)

The above is useful if you’re say, running a Gunicorn server with the gevent worker. With this callback in place, when
you send a query to SQL server and are waiting for a response, you can yield to other greenlets and process other
requests. This is super useful when you have high concurrency and/or slow database queries and lets you use less
Gunicorn worker processes and still handle high concurrency.

Note: set_wait_callback() is a pymssql extension to the DB-API 2.0.

8 Chapter 2. pymssql examples

http://gevent.org
http://gunicorn.org

CHAPTER 3

_mssql examples

Example scripts using _mssql module.

3.1 Quickstart usage of various features

import _mssql
conn = _mssql.connect(server='SQL01', user='user', password='password', \

database='mydatabase')
conn.execute_non_query('CREATE TABLE persons(id INT, name VARCHAR(100))')
conn.execute_non_query("INSERT INTO persons VALUES(1, 'John Doe')")
conn.execute_non_query("INSERT INTO persons VALUES(2, 'Jane Doe')")

how to fetch rows from a table
conn.execute_query('SELECT * FROM persons WHERE salesrep=%s', 'John Doe')
for row in conn:

print "ID=%d, Name=%s" % (row['id'], row['name'])

New in version 2.1.0: Iterating over query results by iterating over the connection object just like it’s already possible
with pymssql connections is new in 2.1.0.

examples of other query functions
numemployees = conn.execute_scalar("SELECT COUNT(*) FROM employees")
numemployees = conn.execute_scalar("SELECT COUNT(*) FROM employees WHERE name LIKE 'J%
→˓'") # note that '%' is not a special character here
employeedata = conn.execute_row("SELECT * FROM employees WHERE id=%d", 13)

how to fetch rows from a stored procedure
conn.execute_query('sp_spaceused') # sp_spaceused without arguments returns 2
→˓result sets
res1 = [row for row in conn] # 1st result
res2 = [row for row in conn] # 2nd result

9

pymssql Documentation, Release 2.1.4

how to get an output parameter from a stored procedure
sqlcmd = """
DECLARE @res INT
EXEC usp_mystoredproc @res OUT
SELECT @res
"""
res = conn.execute_scalar(sqlcmd)

how to get more output parameters from a stored procedure
sqlcmd = """
DECLARE @res1 INT, @res2 TEXT, @res3 DATETIME
EXEC usp_getEmpData %d, %s, @res1 OUT, @res2 OUT, @res3 OUT
SELECT @res1, @res2, @res3
"""
res = conn.execute_row(sqlcmd, (13, 'John Doe'))

examples of queries with parameters
conn.execute_query('SELECT * FROM empl WHERE id=%d', 13)
conn.execute_query('SELECT * FROM empl WHERE name=%s', 'John Doe')
conn.execute_query('SELECT * FROM empl WHERE id IN (%s)', ((5, 6),))
conn.execute_query('SELECT * FROM empl WHERE name LIKE %s', 'J%')
conn.execute_query('SELECT * FROM empl WHERE name=%(name)s AND city=%(city)s', \

{ 'name': 'John Doe', 'city': 'Nowhere' })
conn.execute_query('SELECT * FROM cust WHERE salesrep=%s AND id IN (%s)', \

('John Doe', (1, 2, 3)))
conn.execute_query('SELECT * FROM empl WHERE id IN (%s)', (tuple(xrange(4)),))
conn.execute_query('SELECT * FROM empl WHERE id IN (%s)', \

(tuple([3, 5, 7, 11]),))

conn.close()

Please note the usage of iterators and ability to access results by column name. Also please note that parameters to
connect method have different names than in pymssql module.

3.2 An example of exception handling

import _mssql

conn = _mssql.connect(server='SQL01', user='user', password='password',
database='mydatabase')

try:
conn.execute_non_query('CREATE TABLE t1(id INT, name VARCHAR(50))')

except _mssql.MssqlDatabaseException as e:
if e.number == 2714 and e.severity == 16:

table already existed, so quieten the error
else:

raise # re-raise real error
finally:

conn.close()

10 Chapter 3. _mssql examples

pymssql Documentation, Release 2.1.4

3.3 Custom message handlers

New in version 2.1.1.

You can provide your own message handler callback function that will be invoked by the stack with informative mes-
sages sent by the server. Set it on a per _mssql connection basis by using the _mssql.MSSQLConnection.
set_msghandler() method:

import _mssql

def my_msg_handler(msgstate, severity, srvname, procname, line, msgtext):
"""
Our custom handler -- It simpy prints a string to stdout assembled from
the pieces of information sent by the server.
"""
print("my_msg_handler: msgstate = %d, severity = %d, procname = '%s', "

"line = %d, msgtext = '%s'" % (msgstate, severity, procname,
line, msgtext))

cnx = _mssql.connect(server='SQL01', user='user', password='password')
try:

cnx.set_msghandler(my_msg_handler) # Install our custom handler
cnx.execute_non_query("USE mydatabase") # It gets called at this point

finally:
cnx.close()

Something similar to this would be printed to the standard output:

my_msg_handler: msgstate = x, severity = y, procname = '', line = 1, msgtext =
→˓'Changed database context to 'mydatabase'.'

Todo: Add an example of invoking a Stored Procedure using _mssql.

3.3. Custom message handlers 11

pymssql Documentation, Release 2.1.4

12 Chapter 3. _mssql examples

CHAPTER 4

Release notes

Release notes – All breaking changes and other noteworthy things.

4.1 pymssql 2.0.0

This is a new major version of pymssql. It is totally rewritten from scratch in Cython. Our goals for this version were
to:

• Provide support for Python 3.0 and newer,

• Implement support for stored procedures,

• Rewrite DB-API compilant pymssql module in C (actually in Cython) for increased performance,

• Clean up the module API and the code.

That’s why we decided to bump major version number. Unfortunately new version introduces incompatible changes
in API. Existing scripts may not work with it, and you’ll have to audit them. If you care about compatibility, just
continue using pymssql 1.0.x and slowly move to 2.0.

Project hosting has also changed. Now pymssql is developed on GitHub: http://github.com/pymssql/pymssql.

Credits for the release go to:

• Marc Abramowitz <msabramo_at_gmail_com> who joined the project in Jan 2013 and is responsible for the
actual release of the 2.0 version by fixing many old tickets, coding the port to Python 3 and driving the migration
to Git and GitHub.

• Randy Syring who converted the repository to Mercurial, extended tests and ported them to nose, enhanced the
code in several fronts like multi-platform (compilers, OSes) compatibility, error handling, support of new data
types, SQLAlchemy compatibility and expanded the documentation.

• Damien Churchill <damoxc_at_gmail_com> who set the foundations of the new Cython-based code base, re-
lease engineering, new site features like Sphinx, SimpleJSON and others,

• Andrzej Kukuła <akukula_at_gmail_com> who did all the docs, site migration, and other boring but necessary
stuff.

13

http://github.com/pymssql/pymssql

pymssql Documentation, Release 2.1.4

• Jooncheol Park <jooncheol_at_gmail_com> who did develop the initial version of pymssql (until 0.5.2). Now
just doing boring translation docs for Korean.

4.1.1 pymssql module

• Rewritten from scratch in C, you should observe even better performance than before

• dsn parameter to pymssql.connect() has been removed

• host parameter to pymssql.connect() has been renamed to server to be consistent with _mssql
module

• max_conn parameter to pymssql.connect() has been removed

Connection class

• autocommit() function has been changed to pymssql.Connection.autocommit property that you
can set or get its current state.

Cursor class

• fetchone_asdict() method has been removed. Just use pymssql.connect() with as_dict=True,
then use regular fetchone()

• fetchmany_asdict() method has been removed. Just use pymssql.connect() with
as_dict=True, then use regular fetchmany()

• fetchall_asdict() method has been removed. Just use pymssql.connect() with as_dict=True,
then use regular fetchall()

4.1.2 _mssql module

• Added native support for stored procedures (MSSQLStoredProcedure class)

• maxconn parameter to _mssql.connect() has been removed

• timeout and login_timeout parameter to _mssql.connect() has been added

• get_max_connections() and set_max_connections() module-level methods have been added

• Class names have changed:

Old Name New name
MssqlException MSSQLException
MssqlDriverException MSSQLDriverException
MssqlDatabaseException MSSQLDatabaseException
MssqlRowIterator MSSQLRowIterator
MssqlConnection MSSQLConnection

MSSQLConnection class

• Added tds_version property.

14 Chapter 4. Release notes

CHAPTER 5

FreeTDS

5.1 Installation

5.1.1 Linux

On Linux you can choose between (for the two former choices, when you start the the pymssql installation process it
will look for and pick the header files and libraries for FreeTDS in some usual system-wide locations):

• Use the FreeTDS installation provided by the packages/ports system.

• Build it and install yourself.

• Use the bundled static FreeTDS libraries:

export PYMSSQL_BUILD_WITH_BUNDLED_FREETDS=1
pip install pymssql

These static libraries are built on a x86_64 Ubuntu 14.04 system by using the following sequence:

export CFLAGS="-fPIC" # for the 64 bits version

or

export CFLAGS="-m32 -fPIC" LDFLAGS="-m32" # for the 32 bits version

and then:

./configure --enable-msdblib \
--prefix=/usr --sysconfdir=/etc/freetds --with-tdsver=7.1 \
--disable-apps --disable-server --disable-pool --disable-odbc \
--with-openssl=no --with-gnutls=no

make

Changed in version 2.1.3: Version of FreeTDS Linux static libraries bundled with pymssql is 0.95.95.

15

http://www.freetds.org/userguide/build.htm
https://github.com/FreeTDS/freetds/tree/c9d284c767e569c9ae58ca0e2ad9dcd7c2cc9e55

pymssql Documentation, Release 2.1.4

Changed in version 2.1.2: Version of FreeTDS Linux static libraries bundled with pymssql is 0.95.81 obtained
from branch Branch-0_95 of the official Git repository. Up to 2.1.1 the version of FreeTDS bundled was 0.91.

5.1.2 Mac OS X (with Homebrew)

brew install freetds

5.1.3 Windows

You can:

1. Simply use our official Wheels which include FreeTDS statically linked and have no SSL support.

2. Build pymssql yourself. In this case you have the following choices regarding FreeTDS:

• Use binaries we maintain at https://github.com/ramiro/freetds/releases

Choose the .zip file appropriate for your architecture (x86 vs. x86_64) and your Python version
(vs2008 for Python 2.7, vs2010 for Python 3.3 and 3.4, vs2015 for Python 3.5 and 3.6).

Those builds include iconv support (via win-iconv statically linked).

They provide both static and dynamic library versions of FreeTDS and versions built both with and without
SSL support via OpenSSL (only dinamically linked).

To install OpenSSL you’ll need the distribution that can be downloaded from http://www.npcglib.org/
~stathis/blog/precompiled-openssl/. Choose the right .7z file for your Python version (vs2008 for Python
2.7, vs2010 for Python 3.3 and 3.4, vs2015 for Python 3.5 and 3.6).

• Or you can build it yourself.

Changed in version 2.1.3: FreeTDS is linked statically again on our official Windows binaries.

pymssql version 2.1.2 included a change in the official Windows Wheels by which FreeTDS was dinamically linked.
Read the relevant change log entry for the rationale behind that decision.

Given the fact this didn’t have a good reception from our users, this change has been undone in 2.1.3, FreeTDS is
statically linked like it happened until version 2.1.1.

5.2 Configuration

pymssql uses FreeTDS package to connect to SQL Server instances. You have to tell it how to find your database
servers. The most basic info is host name, port number, and protocol version to use.

The system-wide FreeTDS configuration file is /etc/freetds.conf or C:\freetds.conf, depending upon
your system. It is also possible to use a user specific configuration file, which is $HOME/.freetds.conf on Linux
and %APPDATA%\.freetds.conf on Windows. Suggested contents to start with is at least:

[global]
port = 1433
tds version = 7.0

With this config you will be able to enter just the hostname to pymssql.connect() and _mssql.connect():

import pymssql
connection = pymssql.connect(server='mydbserver', ...)

16 Chapter 5. FreeTDS

https://github.com/FreeTDS/freetds/tree/110179b9c83fe9af88d4c29658dca05e5295ecbb
https://github.com/FreeTDS/freetds/tree/Branch-0_95
https://github.com/ramiro/freetds/releases
https://github.com/win-iconv/win-iconv
http://www.npcglib.org/~stathis/blog/precompiled-openssl/
http://www.npcglib.org/~stathis/blog/precompiled-openssl/
http://www.freetds.org/userguide/build.htm

pymssql Documentation, Release 2.1.4

Otherwise you will have to enter the portname as in:

connection = pymssql.connect(server='mydbserver:1433', ...)

To connect to instance other than the default, you have to know either the instance name or port number on which the
instance listens:

connection = pymssql.connect(server='mydbserver\\myinstancename', ...)
or by port number (suppose you confirmed that this instance is on port 1237)
connection = pymssql.connect(server='mydbserver:1237', ...)

Please see also the pymssql module reference, _mssql module reference, and FAQ pages.

For more information on configuring FreeTDS please go to http://www.freetds.org/userguide/freetdsconf.htm

5.2.1 Testing the connection

If you’re sure that your server is reachable, but pymssql for some reason don’t let you connect, you can check the
connection with tsql utility which is part of FreeTDS package:

$ tsql
Usage: tsql [-S <server> | -H <hostname> -p <port>] -U <username> [-P <password>] [-
→˓I <config file>] [-o <options>] [-t delim] [-r delim] [-D database]
(...)
$ tsql -S mydbserver -U user

Note: Use the above form if and only if you specified server alias for mydbserver in freetds.conf. Otherwise use the
host/port notation:

$ tsql -H mydbserver -p 1433 -U user

You’ll be prompted for a password and if the connection succeeds, you’ll see the SQL prompt:

1>

You can then enter queries and terminate the session with exit.

If the connection fails, tsql utility will display appropriate message.

5.2. Configuration 17

http://www.freetds.org/userguide/freetdsconf.htm

pymssql Documentation, Release 2.1.4

18 Chapter 5. FreeTDS

CHAPTER 6

pymssql module reference

Complete documentation of pymssql module classes, methods and properties.

6.1 Module-level symbols

pymssql.__version__
pymssql version as an Unicode constant. E.g. u"2.1.1", u"2.2.0"

pymssql.VERSION
pymssql version in tuple form which is more easily handled (parse, compare) programmatically. E.g. (2, 1,
1), (2, 2, 0)

New in version 2.2.0.

pymssql.__full_version__
pymssql version as an Unicode constant but including any (PEP 440) suffixes. E.g. u"2.1.0.dev2", u"2.
2.0.dev"

Constants, required by the DB-API 2.0 specification:

pymssql.apilevel
'2.0' – pymssql strives for compliance with DB-API 2.0.

pymssql.paramstyle
'pyformat' – pymssql uses extended python format codes.

pymssql.threadsafety
1 – Module may be shared, but not connections.

19

https://www.python.org/dev/peps/pep-0440

pymssql Documentation, Release 2.1.4

6.2 Functions

pymssql.connect(server=’.’, user=None, password=None, database=”, timeout=0, login_timeout=60,
charset=’UTF-8’, as_dict=False, host=”, appname=None, port=’1433’,
conn_properties=None, autocommit=False, tds_version=None)

Constructor for creating a connection to the database. Returns a Connection object. Note that in most cases
you will want to use keyword arguments, instead of positional arguments.

Parameters

• server (str) – database host

• user (str) – database user to connect as

• password (str) – user’s password

• database (str) – The database to initialize the connection with. By default SQL Server
selects the database which is set as default for specific user

• timeout (int) – query timeout in seconds, default 0 (no timeout)

• login_timeout (int) – timeout for connection and login in seconds, default 60

• charset (str) – character set with which to connect to the database

• as_dict (bool) – Whether rows should be returned as dictionaries instead of tuples. You
can access columns by 0-based index or by name. Please see examples

• host (str) – Database host and instance you want to connect to. Valid examples are:

– r'.\SQLEXPRESS' – SQLEXPRESS instance on local machine (Windows only)

– r'(local)\SQLEXPRESS' – same as above (Windows only)

– 'SQLHOST' – default instance at default port (Windows only)

– 'SQLHOST' – specific instance at specific port set up in freetds.conf (Linux/*nix
only)

– 'SQLHOST,1433' – specified TCP port at specified host

– 'SQLHOST:1433' – the same as above

– 'SQLHOST,5000' – if you have set up an instance to listen on port 5000

– 'SQLHOST:5000' – the same as above

'.' (the local host) is assumed if host is not provided.

• appname (str) – Set the application name to use for the connection

• port (str) – the TCP port to use to connect to the server

• conn_properties – SQL queries to send to the server upon connection establishment.
Can be a string or another kind of iterable of strings. Default value: See _mssql.
connect()

• autocommit (bool) – Whether to use default autocommiting mode or not

• tds_version (str) – TDS protocol version to use

Warning: Currently, setting timeout or login_timeout has a process-wide effect because the FreeTDS db-lib
API functions used to implement such timeouts have a global effect.

20 Chapter 6. pymssql module reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str

pymssql Documentation, Release 2.1.4

Note: If you need to connect to Azure read the relevant topic.

New in version 2.1.1: The ability to connect to Azure.

New in version 2.1.1: The conn_properties parameter.

New in version 2.1.1: The autocommit parameter.

New in version 2.1.2: The tds_version parameter.

Changed in version 2.2.0: The default value of the tds_version parameter was changed to None. In version
2.1.2 its default value was '7.1'.

Warning: The tds_version parameter has a default value of None. This means two things:

1. You can’t rely anymore in the old '7.1' default value and

2. Now you’ll need to either

• Specify its value explicitly by passing a value for this parameter or

• Configure it using facilities provided by FreeTDS (see here and here)

This might look cumbersome but at the same time means you can now fully configure the characteristics of a
connection to SQL Server from Python code when using pymssql without using a stanza for the server in the
freetds.conf file or even with no freetds.conf at all. Up to version 2.1.1 it simply wasn’t possible
to control the TDS protocol version, and in version 2.1.2 it was possible to set it but version 7.1 was used if
not specified.

Warning: FreeTDS added sopport for TDS protocol version 7.3 in version 0.95. You need to be careful of
not asking for TDS 7.3 if you know the undelying FreeTDS used by pymssql is version 0.91 as it won’t raise
any error nor keep you from passing such an invalid value.

Warning: FreeTDS added support for TDS protocol version 7.3 in version 0.95. You need to be careful of
not asking for TDS 7.3 if you know the undelying FreeTDS used by pymssql is older as it won’t raise any
error nor keep you from passing such an invalid value.

pymssql.get_dbversion()
Wrapper around DB-Library’s dbversion() function which returns the version of FreeTDS (actually the
version of DB-Lib) in string form. E.g. "freetds v0.95".

Unfortunately 1) The value returned doesn’t indicate minor revisions (e.g. v0.95.50), 2) Its data type makes
it harder to compare versions or handle it programmatically in other ways and 3) It hasn’t been consistently
updated through the FreeTDS release history.

A pymssql extension to the DB-API 2.0.

pymssql.set_max_connections(number)
Sets maximum number of simultaneous database connections allowed to be open at any given time. Default is
25.

A pymssql extension to the DB-API 2.0.

6.2. Functions 21

http://www.freetds.org/userguide/freetdsconf.htm#TAB.FREETDS.CONF
http://www.freetds.org/userguide/envvar.htm

pymssql Documentation, Release 2.1.4

pymssql.get_max_connections()
Gets current maximum number of simultaneous database connections allowed to be open at any given time.

A pymssql extension to the DB-API 2.0.

pymssql.set_wait_callback(wait_callback_callable)
New in version 2.1.0.

Allows pymssql to be used along cooperative multi-tasking systems and have it call a callback when it’s waiting
for a response from the server.

The passed callback callable should receive one argument: The file descriptor/handle of the network socket
connected to the server, so its signature must be:

def wait_callback_callable(read_fileno):
#...
pass

Its body should invoke the appropiate API of the multi-tasking framework you are using use that results in the
current greenlet yielding the CPU to its siblings whilst there isn’t incoming data in the socket.

See the pymssql examples document for a more concrete example.

A pymssql extension to the DB-API 2.0.

6.3 Connection class

class pymssql.Connection(user, password, host, database, timeout, login_timeout, charset, as_dict)
This class represents an MS SQL database connection. You can create an instance of this class by calling
constructor pymssql.connect().

6.3.1 Connection object properties

This class has no useful properties and data members.

6.3.2 Connection object methods

Connection.autocommit(status)
Where status is a boolean value. This method turns autocommit mode on or off.

By default, autocommit mode is off, what means every transaction must be explicitly committed if changed data
is to be persisted in the database.

You can turn autocommit mode on, what means every single operation commits itself as soon as it succeeds.

A pymssql extension to the DB-API 2.0.

Connection.close()
Close the connection.

Connection.cursor()
Return a cursor object, that can be used to make queries and fetch results from the database.

Connection.commit()
Commit current transaction. You must call this method to persist your data if you leave autocommit at its default
value, which is False.

See also pymssql examples.

22 Chapter 6. pymssql module reference

pymssql Documentation, Release 2.1.4

Connection.rollback()
Roll back current transaction.

6.4 Cursor class

class pymssql.Cursor

This class represents a Cursor (in terms of Python DB-API specs) that is used to make queries against the database and
obtaining results. You create Cursor instances by calling cursor() method on an open Connection connection
object.

6.4.1 Cusor object properties

Cursor.rowcount
Returns number of rows affected by last operation. In case of SELECT statements it returns meaningful infor-
mation only after all rows have been fetched.

Cursor.connection
This is the extension of the DB-API specification. Returns a reference to the connection object on which the
cursor was created.

Cursor.lastrowid
This is the extension of the DB-API specification. Returns identity value of last inserted row. If previous
operation did not involve inserting a row into a table with identity column, None is returned.

Cursor.rownumber
This is the extension of the DB-API specification. Returns current 0-based index of the cursor in the result set.

6.4.2 Cusor object methods

Cursor.close()
Close the cursor. The cursor is unusable from this point.

Cursor.execute(operation)
Cursor.execute(operation, params)

operation is a string and params, if specified, is a simple value, a tuple, a dict, or None.

Performs the operation against the database, possibly replacing parameter placeholders with provided values.
This should be preferred method of creating SQL commands, instead of concatenating strings manually, what
makes a potential of SQL Injection attacks. This method accepts formatting similar to Python’s builtin string
interpolation operator. However, since formatting and type conversion is handled internally, only the %s and %d
placeholders are supported. Both placeholders are functionally equivalent.

Keyed placeholders are supported if you provide a dict for params.

If you call execute() with one argument, the % sign loses its special meaning, so you can use it as usual in
your query string, for example in LIKE operator. See the examples.

You must call Connection.commit() after execute() or your data will not be persisted in the database.
You can also set connection.autocommit if you want it to be done automatically. This behaviour is
required by DB-API, if you don’t like it, just use the _mssql module instead.

Cursor.executemany(operation, params_seq)
operation is a string and params_seq is a sequence of tuples (e.g. a list). Execute a database operation repeatedly
for each element in parameter sequence.

6.4. Cursor class 23

http://en.wikipedia.org/wiki/SQL_injection
https://docs.python.org/3/library/string.html#string-formatting
https://docs.python.org/3/library/string.html#string-formatting

pymssql Documentation, Release 2.1.4

Cursor.fetchone()
Fetch the next row of a query result, returning a tuple, or a dictionary if as_dict was passed to pymssql.
connect(), or None if no more data is available. Raises OperationalError (PEP 249#operationaler-
ror) if previous call to execute*() did not produce any result set or no call was issued yet.

Cursor.fetchmany(size=None)
Fetch the next batch of rows of a query result, returning a list of tuples, or a list of dictionaries if as_dict was
passed to pymssql.connect(), or an empty list if no more data is available. You can adjust the batch size
using the size parameter, which is preserved across many calls to this method. Raises OperationalError
(PEP 249#operationalerror) if previous call to execute*() did not produce any result set or no call was
issued yet.

Cursor.fetchall()
Fetch all remaining rows of a query result, returning a list of tuples, or a list of dictionaries if as_dict was passed
to pymssql.connect(), or an empty list if no more data is available. Raises OperationalError (PEP
249#operationalerror) if previous call to execute*() did not produce any result set or no call was issued
yet.

Cursor.nextset()
This method makes the cursor skip to the next available result set, discarding any remaining rows from the
current set. Returns True value if next result is available, None if not.

Cursor.__iter__()
Cursor.next()

These methods facilitate Python iterator protocol. You most likely will not call them directly, but indirectly by
using iterators.

A pymssql extension to the DB-API 2.0.

Cursor.setinputsizes()
Cursor.setoutputsize()

These methods do nothing, as permitted by DB-API specs.

6.5 Exceptions

exception pymssql.StandardError
Root of the exception hierarchy.

exception pymssql.Warning
Raised for important warnings like data truncations while inserting, etc. A subclass of StandardError.

exception pymssql.Error
Base class of all other error exceptions. You can use this to catch all errors with one single except statement. A
subclass of StandardError.

exception pymssql.InterfaceError
Raised for errors that are related to the database interface rather than the database itself. A subclass of Error.

exception pymssql.DatabaseError
Raised for errors that are related to the database. A subclass of Error.

exception pymssql.DataError
Raised for errors that are due to problems with the processed data like division by zero, numeric value out of
range, etc. A subclass of DatabaseError.

exception pymssql.OperationalError
Raised for errors that are related to the database’s operation and not necessarily under the control of the pro-

24 Chapter 6. pymssql module reference

https://www.python.org/dev/peps/pep-0249#operationalerror
https://www.python.org/dev/peps/pep-0249#operationalerror
https://www.python.org/dev/peps/pep-0249#operationalerror
https://www.python.org/dev/peps/pep-0249#operationalerror
https://www.python.org/dev/peps/pep-0249#operationalerror
https://docs.python.org/3/library/stdtypes.html#typeiter

pymssql Documentation, Release 2.1.4

grammer, e.g. an unexpected disconnect occurs, the data source name is not found, a transaction could not be
processed, a memory allocation error occurred during processing, etc. A subclass of DatabaseError.

exception pymssql.IntegrityError
Raised when the relational integrity of the database is affected, e.g. a foreign key check fails. A subclass of
DatabaseError.

exception pymssql.InternalError
Raised when the database encounters an internal error, e.g. the cursor is not valid anymore, the transaction is
out of sync, etc. A subclass of DatabaseError.

exception pymssql.ProgrammingError
Raised for programming errors, e.g. table not found or already exists, syntax error in the SQL statement, wrong
number of parameters specified, etc. A subclass of DatabaseError.

exception pymssql.NotSupportedError
Raised in case a method or database API was used which is not supported by the database, e.g. requesting a
rollback() on a connection that does not support transaction or has transactions turned off. A subclass of
DatabaseError.

exception pymssql.ColumnsWithoutNamesError
Raised by Cursor.execute() when as_dict=True has been specified to open the connection and
the query sent to the server doesn’t involve columns names in its results. A subclass of InterfaceError.

Note: ColumnsWithoutNamesError isn’t a PEP-249-mandated exception but rather a pymssql extension.

6.5. Exceptions 25

pymssql Documentation, Release 2.1.4

26 Chapter 6. pymssql module reference

CHAPTER 7

_mssql module reference

Complete documentation of _mssql module classes, methods and properties.

7.1 Module-level symbols

_mssql.__version__
See pymssql.__version__.

_mssql.VERSION
See pymssql.VERSION .

New in version 2.2.0.

_mssql.__full_version__
See pymssql.__full_version__.

Variables whose values you can change to alter behavior on a global basis:

_mssql.login_timeout
Timeout for connection and login in seconds, default 60.

_mssql.min_error_severity
Minimum severity of errors at which to begin raising exceptions. The default value of 6 should be appropriate
in most cases.

7.2 Functions

_mssql.set_max_connections(number)
Sets maximum number of simultaneous connections allowed to be open at any given time. Default is 25.

_mssql.get_max_connections()
Gets current maximum number of simultaneous connections allowed to be open at any given time.

27

pymssql Documentation, Release 2.1.4

7.3 MSSQLConnection class

class _mssql.MSSQLConnection
This class represents an MS SQL database connection. You can make queries and obtain results through a
database connection.

You can create an instance of this class by calling _mssql.connect(). It accepts the following arguments.
Note that you can use keyword arguments, instead of positional arguments.

Parameters

• server (str) – Database server and instance you want to connect to. Valid examples are:

– r'.\SQLEXPRESS' – SQLEXPRESS instance on local machine (Windows only)

– r'(local)\SQLEXPRESS' – Same as above (Windows only)

– 'SQLHOST' – Default instance at default port (Windows only)

– 'SQLHOST' – Specific instance at specific port set up in freetds.conf (Linux/*nix only)

– 'SQLHOST,1433' – Specified TCP port at specified host

– 'SQLHOST:1433' – The same as above

– 'SQLHOST,5000' – If you have set up an instance to listen on port 5000

– 'SQLHOST:5000' – The same as above

• user (str) – Database user to connect as

• password (str) – User’s password

• charset (str) – Character set name to set for the connection.

• database (str) – The database you want to initially to connect to; by default, SQL Server
selects the database which is set as the default for the specific user

• appname (str) – Set the application name to use for the connection

• port (str) – the TCP port to use to connect to the server

• tds_version (str) – TDS protocol version to ask for. Default value: None

• conn_properties – SQL queries to send to the server upon connection establishment.
Can be a string or another kind of iterable of strings. Default value:

SET ARITHABORT ON;
SET CONCAT_NULL_YIELDS_NULL ON;
SET ANSI_NULLS ON;
SET ANSI_NULL_DFLT_ON ON;
SET ANSI_PADDING ON;
SET ANSI_WARNINGS ON;
SET ANSI_NULL_DFLT_ON ON;
SET CURSOR_CLOSE_ON_COMMIT ON;
SET QUOTED_IDENTIFIER ON;
SET TEXTSIZE 2147483647; -- http://msdn.microsoft.com/en-us/library/aa259190
→˓%28v=sql.80%29.aspx

New in version 2.1.1: The conn_properties parameter.

Changed in version 2.1.1: Before 2.1.1, the initialization queries now specified by conn_properties wasn’t
customizable and its value was hard-coded to the literal shown above.

28 Chapter 7. _mssql module reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

pymssql Documentation, Release 2.1.4

Note: If you need to connect to Azure read the relevant topic.

New in version 2.1.1: The ability to connect to Azure.

Changed in version 2.2.0: The default value of the tds_version parameter was changed to None. Between
versions 2.0.0 and 2.1.2 its default value was '7.1'.

Warning: The tds_version parameter has a default value of None. This means two things:

1. You can’t rely anymore in the old '7.1' default value and

2. Now you’ll need to either

• Specify its value explicitly by passing a value for this parameter or

• Configure it using facilities provided by FreeTDS (see here and here)

This might look cumbersome but at the same time means you can now fully configure the characteristics
of a connection to SQL Server when using pymssql/_mssql without using a stanza for the server in the
freetds.conf file or even with no freetds.conf at all. Starting with pymssql version 2.0.0 and up
to version 2.1.2 it was already possible to set the TDS protocol version to ask for when connecting to the
server but version 7.1 was used if not specified.

Warning: FreeTDS added sopport for TDS protocol version 7.3 in version 0.95. You need to be careful of
not asking for TDS 7.3 if you know the undelying FreeTDS used by pymssql is version 0.91 as it won’t raise
any error nor keep you from passing such an invalid value.

Warning: FreeTDS added support for TDS protocol version 7.3 in version 0.95. You need to be careful of
not asking for TDS 7.3 if you know the undelying FreeTDS used by pymssql is older as it won’t raise any
error nor keep you from passing such an invalid value.

7.3.1 MSSQLConnection object properties

MSSQLConnection.connected
True if the connection object has an open connection to a database, False otherwise.

MSSQLConnection.charset
Character set name that was passed to _mssql.connect().

MSSQLConnection.identity
Returns identity value of last inserted row. If previous operation did not involve inserting a row into a table with
identity column, None is returned. Example usage – assume that persons table contains an identity column in
addition to name column:

conn.execute_non_query("INSERT INTO persons (name) VALUES('John Doe')")
print "Last inserted row has id = " + conn.identity

MSSQLConnection.query_timeout
Query timeout in seconds, default is 0, which means to wait indefinitely for results. Due to the way DB-

7.3. MSSQLConnection class 29

http://www.freetds.org/userguide/freetdsconf.htm#TAB.FREETDS.CONF
http://www.freetds.org/userguide/envvar.htm

pymssql Documentation, Release 2.1.4

Library for C works, setting this property affects all connections opened from the current Python script (or, very
technically, all connections made from this instance of dbinit()).

MSSQLConnection.rows_affected
Number of rows affected by last query. For SELECT statements this value is only meaningful after reading all
rows.

MSSQLConnection.debug_queries
If set to true, all queries are printed to stderr after formatting and quoting, just before being sent to SQL Server.
It may be helpful if you suspect problems with formatting or quoting.

MSSQLConnection.tds_version
The TDS version used by this connection. Can be one of 4.2, 5.0 7.0, 7.1, 7.2, 7.3 or None if no TDS
version could be detected.

Changed in version 2.1.4: For correctness and consistency the value used to indicate TDS 7.1 changed from
8.0 to 7.1 on pymssql 2.1.4.

Changed in version 2.1.3: 7.3 was added as a possible value.

MSSQLConnection.tds_version_tuple
New in version 2.2.0.

The TDS version used by this connection in tuple form which is more easily handled (parse, compare) pro-
grammatically. Can be one of (4, 2), (5, 0), (7, 0), (7, 1), (7, 2), (7, 3) or None if no TDS
version could be detected.

Changed in version 2.1.3: 7.3 was added as a possible value.

7.3.2 MSSQLConnection object methods

MSSQLConnection.cancel()
Cancel all pending results from the last SQL operation. It can be called more than one time in a row. No
exception is raised in this case.

MSSQLConnection.close()
Close the connection and free all memory used. It can be called more than one time in a row. No exception is
raised in this case.

MSSQLConnection.execute_query(query_string)
MSSQLConnection.execute_query(query_string, params)

This method sends a query to the MS SQL Server to which this object instance is connected. An exception
is raised on failure. If there are pending results or rows prior to executing this command, they are silently
discarded.

After calling this method you may iterate over the connection object to get rows returned by the query.

You can use Python formatting and all values get properly quoted. Please see examples for details.

This method is intented to be used on queries that return results, i.e. SELECT.

MSSQLConnection.execute_non_query(query_string)
MSSQLConnection.execute_non_query(query_string, params)

This method sends a query to the MS SQL Server to which this object instance is connected. After completion,
its results (if any) are discarded. An exception is raised on failure. If there are pending results or rows prior to
executing this command, they are silently discarded.

You can use Python formatting and all values get properly quoted. Please see examples for details.

This method is useful for INSERT, UPDATE, DELETE, and for Data Definition Language commands, i.e. when
you need to alter your database schema.

30 Chapter 7. _mssql module reference

pymssql Documentation, Release 2.1.4

MSSQLConnection.execute_scalar(query_string)
MSSQLConnection.execute_scalar(query_string, params)

This method sends a query to the MS SQL Server to which this object instance is connected, then returns first
column of first row from result. An exception is raised on failure. If there are pending results or rows prior to
executing this command, they are silently discarded.

You can use Python formatting and all values get properly quoted. Please see examples for details.

This method is useful if you want just a single value from a query, as in the example below. This method works
in the same way as iter(conn).next()[0]. Remaining rows, if any, can still be iterated after calling this
method.

Example usage:

count = conn.execute_scalar("SELECT COUNT(*) FROM employees")

MSSQLConnection.execute_row(query_string)
MSSQLConnection.execute_row(query_string, params)

This method sends a query to the MS SQL Server to which this object instance is connected, then returns first
row of data from result. An exception is raised on failure. If there are pending results or rows prior to executing
this command, they are silently discarded.

You can use Python formatting and all values get properly quoted. Please see examples for details.

This method is useful if you want just a single row and don’t want or don’t need to iterate over the connection
object. This method works in the same way as iter(conn).next() to obtain single row. Remaining rows,
if any, can still be iterated after calling this method.

Example usage:

empinfo = conn.execute_row("SELECT * FROM employees WHERE empid=10")

MSSQLConnection.get_header()
This method is infrastructure and doesn’t need to be called by your code. It gets the Python DB-API compliant
header information. Returns a list of 7-element tuples describing current result header. Only name and DB-API
compliant type is filled, rest of the data is None, as permitted by the specs.

MSSQLConnection.init_procedure(name)
Create an MSSQLStoredProcedure object that will be used to invoke thestored procedure with the given name.

MSSQLConnection.nextresult()
Move to the next result, skipping all pending rows. This method fetches and discards any rows remaining from
current operation, then it advances to next result (if any). Returns True value if next set is available, None
otherwise. An exception is raised on failure.

MSSQLConnection.select_db(dbname)
This function makes the given database the current one. An exception is raised on failure.

MSSQLConnection.__iter__()
MSSQLConnection.next()

New in version 2.1.0.

These methods implement the Python iterator protocol. You most likely will not call them directly, but indirectly
by using iterators.

MSSQLConnection.set_msghandler(handler)
New in version 2.1.1.

This method allows setting a message handler function for the connection to allow a client to gain access to the
messages returned from the server.

The signature of the message handler function handler passed to this method must be:

7.3. MSSQLConnection class 31

pymssql Documentation, Release 2.1.4

def my_msg_handler(msgstate, severity, srvname, procname, line, msgtext):
The body of the message handler.

msgstate, severity and line will be integers, srvname, procname and msgtext will be strings.

7.4 MSSQLStoredProcedure class

class _mssql.MSSQLStoredProcedure
This class represents a stored procedure. You create an object of this class by calling the init_procedure()
method on MSSQLConnection object.

7.4.1 MSSQLStoredProcedure object properties

MSSQLStoredProcedure.connection
An underlying MSSQLConnection object.

MSSQLStoredProcedure.name
The name of the procedure that this object represents.

MSSQLStoredProcedure.parameters
The parameters that have been bound to this procedure.

7.4.2 MSSQLStoredProcedure object methods

MSSQLStoredProcedure.bind(value, dbtype, name=None, output=False, null=False, max_length=-1)
This method binds a parameter to the stored procedure. value and dbtype are mandatory arguments, the rest is
optional.

Parameters

• value – Is the value to store in the parameter.

• dbtype – Is one of: SQLBINARY, SQLBIT, SQLBITN, SQLCHAR, SQLDATETIME,
SQLDATETIM4, SQLDATETIMN, SQLDECIMAL, SQLFLT4, SQLFLT8, SQLFLTN,
SQLIMAGE, SQLINT1, SQLINT2, SQLINT4, SQLINT8, SQLINTN, SQLMONEY,
SQLMONEY4, SQLMONEYN, SQLNUMERIC, SQLREAL, SQLTEXT, SQLVARBINARY,
SQLVARCHAR, SQLUUID.

• name – Is the name of the parameter. Needs to be in "@name" form.

• output – Is the direction of the parameter. True indicates that it is an output parameter
i.e. it returns a value after procedure execution (in SQL DDL they are declared by using the
"output" suffix, e.g. "@aname varchar(10) output").

• null – Boolean. Signals than NULL must be the value to be bound to the argument of this
input parameter.

• max_length – Is the maximum data length for this parameter to be returned from the
stored procedure.

MSSQLStoredProcedure.execute()
Execute the stored procedure.

32 Chapter 7. _mssql module reference

pymssql Documentation, Release 2.1.4

7.5 Module-level exceptions

Exception hierarchy:

MSSQLException
|
+-- MSSQLDriverException
|
+-- MSSQLDatabaseException

exception _mssql.MSSQLDriverException
MSSQLDriverException is raised whenever there is a problem within _mssql – e.g. insufficient memory
for data structures, and so on.

exception _mssql.MSSQLDatabaseException

MSSQLDatabaseException is raised whenever there is a problem with the database – e.g. query
syntax error, invalid object name and so on. In this case you can use the following properties to access
details of the error:

number
The error code, as returned by SQL Server.

severity
The so-called severity level, as returned by SQL Server. If value of this property is less than the value of
_mssql.min_error_severity , such errors are ignored and exceptions are not raised.

state
The third error code, as returned by SQL Server.

message
The error message, as returned by SQL Server.

You can find an example of how to use this data at the bottom of _mssql examples page.

7.5. Module-level exceptions 33

pymssql Documentation, Release 2.1.4

34 Chapter 7. _mssql module reference

CHAPTER 8

Migrating from 1.x to 2.x

Because of the DB-API standard and because effort was made to make the interface of pymssql 2.x similar to that of
pymssql 1.x, there are only a few differences and usually upgrading is pretty easy.

There are a few differences though. . .

8.1 str vs. unicode

Note that we are talking about Python 2, because pymssql 1.x doesn’t work on Python 3.

pymssql 1.x will return str instances:

>>> pymssql.__version__
'1.0.3'
>>> conn.as_dict = True
>>> cursor = conn.cursor()
>>> cursor.execute("SELECT 'hello' AS str FROM foo")
>>> cursor.fetchall()
[{0: 'hello', 'str': 'hello'}]

whereas pymssql 2.x will return unicode instances:

>>> pymssql.__version__
u'2.0.1.2'
>>> conn.as_dict = True
>>> cursor = conn.cursor()
>>> cursor.execute("SELECT 'hello' AS str FROM foo")
>>> cursor.fetchall()
[{u'str': u'hello'}]

If your application has code that deals with str and unicode differently, then you may run into issues.

You can always convert a unicode to a str by encoding:

35

pymssql Documentation, Release 2.1.4

>>> cursor.execute("SELECT 'hello' AS str FROM foo")
>>> s = cursor.fetchone()['str']
>>> s
u'hello'
>>> s.encode('utf-8')
'hello'

8.2 Handling of uniqueidentifier columns

SQL Server has a data type called uniqueidentifier.

In pymssql 1.x, uniqueidentifier columns are returned in results as byte strings with 16 bytes; if you want a
uuid.UUID instance, then you have to construct it yourself from the byte string:

>>> cursor.execute("SELECT * FROM foo")
>>> id_value = cursor.fetchone()['uniqueidentifier']
>>> id_value
'j!\xcf\x14D\xce\xe6B\xab\xe0\xd9\xbey\x0cMK'
>>> type(id_value)
<type 'str'>
>>> len(id_value)
16
>>> import uuid
>>> id_uuid = uuid.UUID(bytes_le=id_value)
>>> id_uuid
UUID('14cf216a-ce44-42e6-abe0-d9be790c4d4b')

In pymssql 2.x, uniqueidentifier columns are returned in results as instances of uuid.UUID and if you want
the bytes, like in pymssql 1.x, you have to use uuid.UUID.bytes_le to get them:

>>> cursor.execute("SELECT * FROM foo")
>>> id_value = cursor.fetchone()['uniqueidentifier']
>>> id_value
UUID('14cf216a-ce44-42e6-abe0-d9be790c4d4b')
>>> type(id_value)
<class 'uuid.UUID'>
>>> id_value.bytes_le
'j!\xcf\x14D\xce\xe6B\xab\xe0\xd9\xbey\x0cMK'

8.3 Arguments to pymssql.connect

The arguments are a little bit different. Some notable differences:

In pymssql 1.x, the parameter to specify the host is called host and it can contain a host and port – e.g.:

conn = pymssql.connect(host='SQLHOST:1433') # specified TCP port at a host

There are some other syntaxes for the host parameter that allow using a comma instead of a colon to delimit host
and port, to specify Windows hosts, to specify a specific SQL Server instance, etc.

conn = pymssql.connect(host=r'SQLHOST,5000') # specified TCP port at a host
conn = pymssql.connect(host=r'(local)\SQLEXPRESS') # named instance on local machine
→˓[Win]

36 Chapter 8. Migrating from 1.x to 2.x

http://technet.microsoft.com/en-us/library/ms187942.aspx
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID
https://docs.python.org/3/library/uuid.html#uuid.UUID.bytes_le

pymssql Documentation, Release 2.1.4

In pymssql 2.x, the host parameter is supported (I am unsure if it has all of the functionality of pymssql 1.x). There
is also a parameter to specify the host that is called server. There is a separate parameter called port.

conn = pymssql.connect(server='SQLHOST', port=1500)

8.4 Parameter substitution

For parameter substitution, pymssql 2.x supports the format and pyformat PEP 249 paramstyles.

Note that for pyformat, PEP 249 only shows the example of a string substitution – e.g.:

%(name)s

It is not clear from PEP 249 whether other types should be supported, like:

%(name)d
%(name)f

However, in this mailing list thread, the general consensus is that the string format should be the only one required.

Note that pymssql 2.x does not support %(name)d, whereas pymssql 1.x did. So you may have to change code that
uses this notation:

>>> pymssql.__version__
u'2.0.1.2'
>>> pymssql.paramstyle
'pyformat'

>>> cursor.execute("select 'hello' where 1 = %(name)d", dict(name=1))
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "pymssql.pyx", line 430, in pymssql.Cursor.execute (pymssql.c:5900)
if not self._source._conn.nextresult():

pymssql.ProgrammingError: (102, "Incorrect syntax near '('.
DB-Lib error message 20018, severity 15:\n
General SQL Server error: Check messages from the SQL Server\n")

to:

>>> cursor.execute("select 'hello' where '1' = %(name)s", dict(name='1'))
>>> cursor.fetchall()
[(u'hello',)]

or:

>>> cursor.execute("select 'hello' where 1 = %d", 1)
>>> cursor.fetchall()
[(u'hello',)]

Examples of this problem:

• Google Group post: paramstyle changed?

• GitHub issue #155: pymssql 2.x does not support “%(foo)d” parameter substitution style; pymssql 1.x did

8.4. Parameter substitution 37

http://www.python.org/dev/peps/pep-0249/#paramstyle
http://python.6.x6.nabble.com/Some-obscurity-with-paramstyle-td2163302.html
https://groups.google.com/forum/?fromgroups=#!searchin/pymssql/param/pymssql/sSriPxHfZNk/VoOrl-84MQwJ
https://github.com/pymssql/pymssql/issues/155

pymssql Documentation, Release 2.1.4

38 Chapter 8. Migrating from 1.x to 2.x

CHAPTER 9

Frequently asked questions

9.1 Cannot connect to SQL Server

If your Python program/script can’t connect to a SQL Server instance, try the following:

• By default SQL Server 2005 and newer don’t accept remote connections, you have to use SQL Server Sur-
face Area Configuration and/or SQL Server Configuration Manager to enable specific protocols and network
adapters; don’t forget to restart SQL Server after making these changes,

• If SQL Server is on a remote machine, check whether connections are not blocked by any intermediate firewall
device, firewall software, antivirus software, or other security facility,

• Check that you can connect with another tool.

If you are using FreeTDS, then you can use the included tsql command to try to connect – it looks
like this:

$ tsql -H sqlserverhost -p 1433 -U user -P password -D tempdb
locale is "en_US.UTF-8"
locale charset is "UTF-8"
using default charset "UTF-8"
Setting tempdb as default database in login packet
1> SELECT @@VERSION
2> GO

Microsoft SQL Server 2012 - 11.0.2100.60 (X64)
Feb 10 2012 19:39:15
Copyright (c) Microsoft Corporation
Developer Edition (64-bit) on Windows NT 6.1 <X64> (Build 7601:

→˓Service Pack 1)

(1 row affected)

Note: Note that I use the -H option rather than the -S option to tsql. This is because with -H, it
will bypass reading settings from the freetds.conf file like port and tds version, and so

39

http://www.freetds.org/

pymssql Documentation, Release 2.1.4

this is more similar to what happens with pymssql.

If you can’t connect with tsql or other tools, then the problem is probably not pymssql; you prob-
ably have a problem with your server configuration (see below), FreeTDS Configuration, network,
etc.

If you can connect with tsql, then you should be able to connect with pymssql with something like
this:

>>> import pymssql
>>> conn = pymssql.connect(
... server="sqlserverhost",
... port=1433,
... user="user",
... password="password",
... database="tempdb")
>>> conn
<pymssql.Connection object at 0x10107a3f8>
>>> cursor = conn.cursor()
>>> cursor.execute("SELECT @@VERSION")
>>> print(cursor.fetchone()[0])
Microsoft SQL Server 2012 - 11.0.2100.60 (X64)
Feb 10 2012 19:39:15
Copyright (c) Microsoft Corporation
Developer Edition (64-bit) on Windows NT 6.1 <X64> (Build 7601: Service

→˓Pack 1)

If something like the above doesn’t work, then you can try to diagnose by setting one or both of the
following FreeTDS environment variables that control logging:

– TDSDUMP

– TDSDUMPCONFIG

Either or both of these can be set. They can be set to a filename or to stdout or stderr.

These will cause FreeTDS to output a ton of information about what it’s doing and you may very
well spot that it’s not using the port that you expected or something similar. For example:

>>> import os
>>> os.environ['TDSDUMP'] = 'stdout'
>>>
>>> import pymssql
>>> conn = pymssql.connect(server="sqlserverhost")
log.c:194:Starting log file for FreeTDS 0.92.dev.20140102
on 2014-01-09 14:05:32 with debug flags 0x4fff.

config.c:731:Setting 'dump_file' to 'stdout' from $TDSDUMP.
...
dblib.c:7934:20013: "Unknown host machine name"
dblib.c:7955:"Unknown host machine name", client returns 2 (INT_CANCEL)
util.c:347:tdserror: client library returned TDS_INT_CANCEL(2)
util.c:370:tdserror: returning TDS_INT_CANCEL(2)
login.c:418:IP address pointer is empty
login.c:420:Server sqlserverhost:1433 not found!
...

Note: Note that pymssql will use a default port of 1433, despite any ports you may have specified in
your freetds.conf file. So if you have SQL Server running on a port other than 1433, you must

40 Chapter 9. Frequently asked questions

http://www.freetds.org/userguide/logging.htm

pymssql Documentation, Release 2.1.4

explicitly specify the port in your call to pymssql.connect. You cannot rely on it to pick up
the port in your freetds.conf, even though tsql -S might do this. This is why I recommend
using tsql -H instead for diagnosing connection problems.

It is also useful to know that tsql -C will output a lot of information about FreeTDS, that can be
useful for diagnosing problems:

$ tsql -C
Compile-time settings (established with the "configure" script)

Version: freetds v0.92.dev.20140102
freetds.conf directory: /usr/local/etc

MS db-lib source compatibility: no
Sybase binary compatibility: no

Thread safety: yes
iconv library: yes
TDS version: 5.0

iODBC: yes
unixodbc: no

SSPI "trusted" logins: no
Kerberos: no
OpenSSL: no
GnuTLS: no

• If you use pymssql on Linux/Unix with FreeTDS, check that FreeTDS’s configuration is ok and that it can be
found by pymssql. The easiest way is to test connection using tsql utility which can be found in FreeTDS
package. See FreeTDS Configuration for more info,

9.2 Returned dates are not correct

If you use pymssql on Linux/*nix and you suspect that returned dates are not correct, please read the FreeTDS and
dates page.

9.3 Queries return no rows

There is a known issue where some versions of pymssql 1.x (pymssql 1.0.2 is where I’ve seen this) work well with
FreeTDS 0.82, but return no rows when used with newer versions of FreeTDS, such as FreeTDS 0.91. At SurveyMon-
key, we ran into this problem when we were using pymssql 1.0.2 and then upgraded servers from Ubuntu 10 (which
includes FreeTDS 0.82) to Ubuntu 12 (which includes FreeTDS 0.91).

E.g.:

>>> import pymssql
>>> pymssql.__version__
'1.0.2'
>>> conn = pymssql.connect(host='127.0.0.1:1433', user=user,
... password=password, database='tempdb')
>>> cursor = conn.cursor()
>>> cursor.execute('SELECT 1')
>>> cursor.fetchall()
[]

See GitHub issue 137: pymssql 1.0.2: No result rows are returned from queries with newer versions of FreeTDS.

There are two way to fix this problem:

9.2. Returned dates are not correct 41

https://www.surveymonkey.com/
https://www.surveymonkey.com/
https://pypi.python.org/pypi/pymssql/1.0.2
https://github.com/pymssql/pymssql/issues/137

pymssql Documentation, Release 2.1.4

1. (Preferred) Upgrade to pymssql 2.x. pymssql 1.x is not actively being worked on. pymssql 2.x is rewritten in
Cython, is actively maintained, and offers better performance, Python 3 support, etc. E.g.:

>>> import pymssql
>>> pymssql.__version__
u'2.0.1.2'
>>> conn = pymssql.connect(host='127.0.0.1:1433', user=user,
... password=password, database='tempdb')
>>> cursor = conn.cursor()
>>> cursor.execute('SELECT 1')
>>> cursor.fetchall()
[(1,)]

2. Upgrade to pymssql 1.0.3. This is identical to pymssql 1.0.2 except that it has a very small change that makes it
so that it works with newer versions of FreeTDS as well as older versions.

E.g.:

>>> import pymssql
>>> pymssql.__version__
'1.0.3'
>>> conn = pymssql.connect(host='127.0.0.1:1433', user=user,
... password=password, database='tempdb')
>>> cursor = conn.cursor()
>>> cursor.execute('SELECT 1')
>>> cursor.fetchall()
[(1,)]

9.4 Results are missing columns

One possible cause of your result rows missing columns is if you are using a connection or cursor with
as_dict=True and your query has columns without names – for example:

>>> cursor = conn.cursor(as_dict=True)
>>> cursor.execute("SELECT MAX(x) FROM (VALUES (1), (2), (3)) AS foo(x)")
>>> cursor.fetchall()
[{}]

Whoa, what happened to MAX(x)?!?!

In this case, pymssql does not know what name to use for the dict key, so it omits the column.

The solution is to supply a name for all columns – e.g.:

>>> cursor.execute("SELECT MAX(x) AS [MAX(x)] FROM (VALUES (1), (2), (3)) AS foo(x)")
>>> cursor.fetchall()
[{u'MAX(x)': 3}]

This behavior was changed in https://github.com/pymssql/pymssql/pull/160 – with this change, if you specify
as_dict=True and omit column names, an exception will be raised:

>>> cursor.execute("SELECT MAX(x) FROM (VALUES (1), (2), (3)) AS foo(x)")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "pymssql.pyx", line 426, in pymssql.Cursor.execute (pymssql.c:5828)

(continues on next page)

42 Chapter 9. Frequently asked questions

https://pypi.python.org/pypi/pymssql/1.0.3
https://github.com/pymssql/pymssql/pull/160

pymssql Documentation, Release 2.1.4

(continued from previous page)

raise ColumnsWithoutNamesError(columns_without_names)
pymssql.ColumnsWithoutNamesError: Specified as_dict=True and there are columns with
→˓no names: [0]

Examples of this problem:

• Google Group post: pymssql with MAX(values) function does not appear to work

9.5 pymssql does not unserialize DATE and TIME columns to
datetime.date and datetime.time instances

You may notice that pymssql will unserialize a DATETIME column to a datetime.datetime instance, but it will
unserialize DATE and TIME columns as simple strings. For example:

>>> cursor.execute("""
... CREATE TABLE dates_and_times (
... datetime DATETIME,
... date DATE,
... time TIME,
...)
... """)
>>> cursor.execute("INSERT INTO dates_and_times VALUES (GETDATE(), '20140109', '6:17')
→˓")
>>> cursor.execute("SELECT * FROM dates_and_times")
>>> cursor.fetchall()
[{u'date': u'2014-01-09', u'time': u'06:17:00.0000000',

u'datetime': datetime.datetime(2014, 1, 9, 12, 41, 59, 403000)}]
>>> cursor.execute("DROP TABLE dates_and_times")

Yep, so the problem here is that DATETIME has been supported by FreeTDS for a long time, but DATE and TIME are
newer types in SQL Server, Microsoft never added support for them to db-lib and FreeTDS added support for them in
version 0.95.

If you need support for these data types (i.e. they get returned from the database as their native corresponding Python
data types instead of as strings) as well as for the DATETIME2 one, then make sure the following conditions are met:

• You are connecting to SQL Server 2008 or newer.

• You are using FreeTDS 0.95 or newer.

• You are using TDS protocol version 7.3 or newer.

9.6 Shared object “libsybdb.so.3” not found

On Linux/*nix you may encounter the following behaviour:

>>> import _mssql
Traceback (most recent call last):
File "<stdin>", line 1, in ?
ImportError: Shared object "libsybdb.so.3" not found

It may mean that the FreeTDS library is unavailable, or that the dynamic linker is unable to find it. Check that it is
installed and that the path to libsybdb.so is in /etc/ld.so.conf file. Then do ldconfig as root to refresh

9.5. pymssql does not unserialize DATE and TIME columns to datetime.date and
datetime.time instances

43

https://groups.google.com/forum/?fromgroups#!topic/pymssql/JoZpmNZFtxM
https://docs.python.org/3/library/datetime.html#datetime.datetime
http://www.freetds.org/

pymssql Documentation, Release 2.1.4

linker database. On Solaris, I just set the LD_LIBRARY_PATH environment variable to the directory with the library
just before launching Python.

pymssql 2.x bundles the FreeTDS sybdb library for supported platforms. This error may show up in 2.x versions if
you are trying to build with your own FreeTDS.

9.7 “DB-Lib error message 20004, severity 9: Read from SQL server
failed” error appears

On Linux/*nix you may encounter the following behaviour:

>>> import _mssql
>>> c=_mssql.connect('hostname:portnumber','user','pass')
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
_mssql.DatabaseException: DB-Lib error message 20004, severity 9:
Read from SQL server failed.
DB-Lib error message 20014, severity 9:
Login incorrect.

It may happen when one of the following is true:

• freetds.conf file cannot be found,

• tds version in freetds.conf file is not 7.0 or 4.2,

• any character set is specified in freetds.conf,

• an unrecognized character set is passed to _mssql.connect() or pymssql.connect() method.

"Login incorrect" following this error is spurious, real "Login incorrect" messages has code=18456
and severity=14.

9.8 Unable to use long username and password

This is a solved FreeTDS problem but you need to be using FreeTDS 0.95 or newer, if you are stuck with 0.91 then
keep in mind this limitation, even when you can get usernames, passwords longer than 30 to work on tsql.

9.9 More troubleshooting

If the above hasn’t covered the problem you can send a message describing it to the pymssql mailing list. You can also
consult FreeTDS troubleshooting page for issues related to the TDS protocol.

44 Chapter 9. Frequently asked questions

http://www.freetds.org/userguide/troubleshooting.htm

CHAPTER 10

Building and developing pymssql

10.1 Building

To build pymssql you should have:

• Python >= 2.7 including development files. Please research your OS usual software distribution channels, e.g,
python-dev or python-devel packages.

• Cython >= 0.19.1

• FreeTDS >= 0.91 including development files. Please research your OS usual software distribution channels,
e.g, freetds-dev or freetds-devel packages.

• Microsoft SQL Server

Note: If developing on Windows you will want to make sure you install debug symbols. For more information see
https://docs.python.org/3/using/windows.html#installation-steps

Note: If you need to connect to Azure make sure FreeTDS is built with SSL support. Instructions on how to do this
are out of the scope of this document.

10.1.1 Windows

Required Tools

In addition to the requirements above when developing pymssql on the Windows platform you will need these
additional tools installed:

• Visual Studio C++ Compiler Tools

• Developer Command Prompt for Visual Studio

45

https://docs.python.org/3/using/windows.html#installation-steps

pymssql Documentation, Release 2.1.4

• Cmake

• 7Zip

For C++ and the Developer Command Prompt the easiest path is installing Visual Studio. When installing make sure
you select the C++ libraries and components. Also make sure that Visual Studio installs nmake with the C++ library
installs.

• https://visualstudio.microsoft.com/vs/community/

Note: One thing to be aware of is which version of Python you are using relative to which C++ compilers you
have installed. When building on Windows you should make sure you have the required compiler, pip and setuptools
versions installed. For more information see https://wiki.python.org/moin/WindowsCompilers

Required Libraries

Developing pymssql on Windows also requires the following libraries:

• FreeTDS

• iconv

For development you will want freetds to be available in your project path. You can find prebuilt artifacts at the
FreeTDS Appveyor project

To download select the job name that matches your environment (platform, version and tds version) and then click the
artifacts tag. You can download the zip file with or without ssl depending on your needs.

Note: Remove the existing freetds0.95 directory in the pymssql project directory

Extract the .zip artifact into your project path into a directory named freetds

C:\\%USERPATH%\\pymssql\\freetds

You will also need to remove the branch tag from the artifact directory (for instance master from
vs2015_64-master) or update the INCLUDE and LIB environment variables so that the compiler and
linker are able to find the path to %PROJECTROOT%\\freetds\\<artifact folder>\\include and
%PROJECTROOT%\\freetds\\<artifact folder>\\lib in the build step.

Note: If you decide to add the directories to INCLUDE and LIB the below provide example commands

In addition to freetds you will want iconv available on your project path. For iconv on Windows we recommend
https://github.com/win-iconv/win-iconv.git. We will retrieve this in an upcoming build step.

If you prefer to build FreeTDS on your own please refer to the FreeTDS config and os issues build pages.

Required Environment Variables

You will need to set the following environment variables in Visual Studio Developer Command Prompt before in-
stalling iconv.

• set PYTHON_VERSION=<Python Version>

• set PYTHON_ARCH=<Python Architecture>

• set VS_VER=<MSVC Compiler Version>

46 Chapter 10. Building and developing pymssql

https://cmake.org/download/
https://www.7-zip.org/download.html
https://visualstudio.microsoft.com/vs/community/
https://wiki.python.org/moin/WindowsCompilers
http://www.freetds.org/
https://www.gnu.org/software/libiconv/
https://ci.appveyor.com/project/FreeTDS/freetds?branch=master
https://github.com/win-iconv/win-iconv.git
http://www.freetds.org/
http://www.freetds.org/userguide/osissues.htm

pymssql Documentation, Release 2.1.4

Example:

Installing iconv

pymssql expects iconv header and lib objects and to be available in the build\\include and build\\bin
directories

From the root of your project (pymssql directory) run:

This is a powershell script that will download win-iconv from the previously mentioned GitHub repository, build and
move the artifacts to the directory that pymssql will use with Cython.

Note: If you receive the following TLS error that is probably due to a mismatch between powershells TLS version
and GitHub.

You can add this line to %PROJECTROOT%\\dev\\appveyor\\install-win-iconv.ps1

[Net.ServicePointManager]::SecurityProtocol = [Net.SecurityProtocolType]::Tls12

On line 3 and the powershell script should run with TLS1.2. See issue 547 for more information

Required Python Packages

For Python you will need the following packages installed into your virtual environment:

• Cython

• pytest == 3.2.5

• SQLAlchemy

• wheel

Running the build

With the above libraries, pacakges and potential environment variables in place we are ready to build.

At the root of the project with your virtual environment activated run

If there are no errors you are then ready to run

or continue on to the Testing documentation which advises using

To report any issues with building on Windows please use the mailing list

10.1.2 Unix

To build on Unix you must also have:

• gcc

Then you can simply run:

python setup.py build

10.1. Building 47

https://github.com/win-iconv/win-iconv/
https://github.com/pymssql/pymssql/issues/547
https://groups.google.com/forum/#!forum/pymssql

pymssql Documentation, Release 2.1.4

or other setup.py commands as needed.

10.2 Testing

Danger: ALL DATA IN TESTING DBS WILL BE DELETED !!!!

You will need to install two additional packages for testing:

easy_install pytest SQLAlchemy

You should build the package with:

python setup.py develop

You need to setup a tests.cfg file in tests/ with the correct DB connection information for your environment:

cp tests/tests.cfg.tpl tests/tests.cfg
vim|emacs|notepad tests/tests.cfg

To run the tests:

cd tests # optional
py.test

Which will go through and run all the tests with the settings from the DEFAULT section of tests.cfg.

To run with a different tests.cfg section:

py.test --pymssql-section=<secname>

example:

py.test --pymssql-section=AllTestsWillRun

to avoid slow tests:

py.test -m "not slow"

to select specific tests to run:

py.test tests/test_types.py
py.test tests/test_types.py tests/test_sprocs.py
py.test tests/test_types.py::TestTypes
py.test tests/test_types.py::TestTypes::test_image

48 Chapter 10. Building and developing pymssql

CHAPTER 11

FreeTDS and dates

Explanation of how pymssql and FreeTDS can break dates.

11.1 Summary

Make sure that FreeTDS is compiled with --enable-msdblib configure option, or your queries will return
wrong dates – "2010-00-01" instead of "2010-01-01".

11.2 Details

There’s an obscure problem on Linux/*nix that results in dates shifted back by 1 month. This behaviour is caused by
different dbdatecrack() prototypes in Sybase Open Client DB-Library/C and the Microsoft SQL DB Library for
C. The first one returns month as 0..11 whereas the second gives month as 1..12. See this FreeTDS mailing list post,
Microsoft manual for dbdatecrack(), and Sybase manual for dbdatecrack() for details.

FreeTDS, which is used on Linux/*nix to connect to Sybase and MS SQL servers, tries to imitate both modes:

• Default behaviour, when compiled without --enable-msdblib, gives dbdatecrack() which is Sybase-
compatible,

• When configured with --enable-msdblib, the dbdatecrack() function is compatible with MS SQL
specs.

pymssql requires MS SQL mode, evidently. Unfortunately at runtime we can’t reliably detect which mode FreeTDS
was compiled in (as of FreeTDS 0.63). Thus at runtime it may turn out that dates are not correct. If there was a way
to detect the setting, pymssql would be able to correct dates on the fly.

If you can do nothing about FreeTDS, there’s a workaround. You can redesign your queries to return string instead of
bare date:

SELECT datecolumn FROM tablename

can be rewritten into:

49

http://lists.ibiblio.org/pipermail/freetds/2002q3/008336.html
http://msdn.microsoft.com/en-us/library/aa937027(SQL.80).aspx
http://manuals.sybase.com/onlinebooks/group-cnarc/cng1110e/dblib/@Generic__BookTextView/15108

pymssql Documentation, Release 2.1.4

SELECT CONVERT(CHAR(10),datecolumn,120) AS datecolumn FROM tablename

This way SQL will send you string representing the date instead of binary date in datetime or smalldatetime format,
which has to be processed by FreeTDS and pymssql.

50 Chapter 11. FreeTDS and dates

CHAPTER 12

Connecting to Azure SQL Database

Starting with version 2.1.1 pymssql can be used to connect to Microsoft Azure SQL Database.

Make sure the following requirements are met:

• Use FreeTDS 0.91 or newer

• Use TDS protocol 7.1 or newer

• Make sure FreeTDS is built with SSL support

• Specify the database name you are connecting to in the database parameter of the relevant connect() call

• IMPORTANT: Do not use username@server.database.windows.net for the user parameter of the
relevant connect() call! You must use the shorter username@server form instead!

Example:

pymssql.connect("xxx.database.windows.net", "username@xxx", "password", "db_name")

or, if you’ve defined myalias in the freetds.conf FreeTDS config file:

[myalias]
host = xxx.database.windows.net
tds version = 7.1
...

then you could use:

pymssql.connect("myalias", "username@xxx", "password", "db_name")

51

pymssql Documentation, Release 2.1.4

52 Chapter 12. Connecting to Azure SQL Database

CHAPTER 13

Docker

(Experimental)

There is a pymssql Docker image on the Docker Registry at:

https://registry.hub.docker.com/u/pymssql/pymssql/

The image bundles:

• Ubuntu 14.04 LTS (trusty)

• Python 2.7.6

• pymssql 2.1.2.dev

• FreeTDS 0.91

• SQLAlchemy 0.9.8

• Alembic 0.7.4

• Pandas 0.15.2

• Numpy 1.9.1

• IPython 2.3.1

To try it, first download the image (this requires Internet access and could take a while):

docker pull pymssql/pymssql

Then run a Docker container using the image with:

docker run -it --rm pymssql/pymssql

By default, if no command is specified, an IPython shell is invoked. You can override the command if you wish – e.g.:

docker run -it --rm pymssql/pymssql bin/bash

Here’s how using the Docker container looks in practice:

53

https://registry.hub.docker.com/u/pymssql/pymssql/
http://ipython.org

pymssql Documentation, Release 2.1.4

$ docker pull pymssql/pymssql
...
$ docker run -it --rm pymssql/pymssql
Python 2.7.6 (default, Mar 22 2014, 22:59:56)
Type "copyright", "credits" or "license" for more information.

IPython 2.1.0 -- An enhanced Interactive Python.
? -> Introduction and overview of IPython's features.
%quickref -> Quick reference.
help -> Python's own help system.
object? -> Details about 'object', use 'object??' for extra details.

In [1]: import pymssql; pymssql.__version__
Out[1]: u'2.1.1'

In [2]: import sqlalchemy; sqlalchemy.__version__
Out[2]: '0.9.7'

In [3]: import pandas; pandas.__version__
Out[3]: '0.14.1'

See the Docker docs for installation instructions for a number of platforms; you can try this link: https://docs.docker.
com/installation/#installation

54 Chapter 13. Docker

https://docs.docker.com/installation/#installation
https://docs.docker.com/installation/#installation

CHAPTER 14

Change log

Change Log
==========

Version 2.1.4 - To be released
==============================

General

- Allow linkage against FreeTDS (by dropping usage of deprecated
``DBVERSION_80`` symbol.) (GH-432)

- Stop using 7.1 as default value for the TDS protocol version used in connections.

This is a backward incompatible change and affects connections using both
`pymssql` and `_mssql`.

Now you need to specify a TDS protocol version explicitly by using any of
the supported mechanisms (in descending order of precedence):

* Using the ``tds_version`` paramenter of ``pymssql.connect()`` and
``_mssql.connect()``

* A ``TDSVER`` enviromnent variable (see FreeTDS documentation)

* A ``freetds.conf`` file (see FreeTDS documentation)

- Drop support for versions of FreeTDS older than 0.91.

- Accept 7.3 as TDS protocol version when establishing a connection.

- Add Python 3.7 support

- Drop Python 3.3 support

Features

(continues on next page)

55

pymssql Documentation, Release 2.1.4

(continued from previous page)

- Support for new in SQL Server 2008 ``DATE``, ``TIME`` and ``DATETIME2`` data
types (GH-156). The following conditions need to be additionally met so
values of these column types can be returned from the database as their
native corresponding Python data types instead of as strings:

* Underlying FreeTDS must be 0.95 or newer.

* TDS protocol version in use must be 7.3 or newer.

Thanks Ed Avis for the implementation. (GH-331)

Bug fixes

- Finish implementation of TDS protocol version 7.3 support by actually
accepting ``"7.3"`` as TDS protocol version when establishing a connection.
(GH-455)

- Fixed and expanded Python data types that can be used to pass ``VARBINARY``,
``BINARY`` and ``IMAGE`` SQL Server Stored Procedures input parameters.
(GH-425). Thanks Bill Adams for the fix.

- Fix ``tds_version`` ``_mssql`` connection property value for TDS version.
7.1 is actually 7.1 and not 8.0.

Version 2.1.3 - 2016-06-22 - Ramiro Morales
===

General

- Windows official binaries: Rollback changes to Windows binaries we had
implemented in pymssql 2.1.2; go back to using:

* A statically linked version of FreeTDS (v0.95.95)

* No SSL support

- Update bundled Linux static version of FreeTDS to v0.95.95.

Features

- We now publish Linux PEP 513 manylinux wheels on PyPI.

Bug fixes

- Add support for reporting TDS version 7.3 is in use via the ``tds_version``
property of a ``_mssql``-level connection.

Version 2.1.2 - 2016-02-10 - Ramiro Morales
===

.. attention:: Windows users: You need to download and install additional DLLs

pymssql version 2.1.2 includes a change in the official Windows binaries:
FreeTDS isn't statically linked as it happened up to release 2.1.1, as that
FreeTDS copy lacked SSL support.

(continues on next page)

56 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

Please see http://pymssql.org/en/latest/freetds.html#windows for futher
details.

We are trying to find a balance between security and convenience and will
be evaluating the situation for future releases. Your feedback is greatly
welcome.

General

- Drop support for Python 2.6.

- Add support for Python 3.5.

- Update shipped Linux FreeTDS static libs to 0.95

Features

- Add ability to set TDS protocol version from pymssql when connecting to SQL
Server. For the remaining pymssql 2.1.x releases its default value will be 7.1
(GH-323)

- Add Dockerfile and a Docker image and instructions on how to use it (GH-258).
This could be a convenient way to use pymssql without having to build stuff.
See http://pymssql.readthedocs.org/en/latest/intro.html#docker
Thanks Marc Abramowitz.

- Floating point values are now accepted as Stored Procedure arguments
(GH-287). Thanks Runzhou Li (Leo) for the report and Bill Adams for the
implementation.

- Send pymssql version in the appname TDS protocol login record field when the
application doesn't provide one (GH-354)

Bug fixes

- Fix a couple of very common causes of segmentation faults in presence of
network a partition between a pymssql-based app and SQL Server (GH-147,
GH-271) Thanks Marc Abramowitz. See also GH-373.

- Fix failures and inconsistencies in query parameter interpolation when
UTF-8-encoded literals are present (GH-185). Thanks Bill Adams. Also, GH-291.

- Fix ``login_timeout`` parameter of ``pymssql.connect()`` (GH-318)

- Fixed some cases of ``cursor.rowcont`` having a -1 value after iterating
over the value returned by pymssql cursor ``fetchmany()`` and ``fetchone()``
methods (GH-141)

- Remove automatic treatment of string literals passed in queries that start
with ``'0x'`` as hexadecimal values (GH-286)

- Fix build fatal error when using Cython >= 0.22 (GH-311)

(continues on next page)

57

pymssql Documentation, Release 2.1.4

(continued from previous page)

Documentation

- Add installation instructions. Thanks Marc Abramowitz.

- Document DB-API-mandated exceptions.

- Enhance ``_mssql.MSSQLStoredProcedure.bind()`` docs.

- Enhance description of Azure connections requirements.

Internals

- Add Appveyor hosted CI setup for running tests on Windows (GH-347)

- Travis CI: Use newer, faster, container-based infrastructure. Also, test
against more than one FreeTDS version.

- Make it possible to build official release files (sdist, wheels) on Travis &
AppVeyor.

Version 2.1.1 - 2014-11-25 - Ramiro Morales
===

Features

- Custom message handlers (GH-139)

The DB-Library API includes a callback mechanism so applications can provide
functions known as *message handlers* that get passed informative messages
sent by the server which then can be logged, shown to the user, etc.

``_mssql`` now allows you to install your own *message handlers* written in
Python. See the ``_msssql`` examples and reference sections of the
documentation for more details.

Thanks Marc Abramowitz.

- Compatibility with Azure

It is now possible to transparently connect to `SQL Server instances`_
accessible as part of the Azure_ cloud services.

.. note:: If you need to connect to Azure make sure you use FreeTDS 0.91 or
newer.

- Customizable per-connection initialization SQL clauses (both in ``pymssql``
and ``_mssql``) (GH-97)

It is now possible to customize the SQL statements sent right after the
connection is established (e.g. ``'SET ANSI_NULLS ON;'``). Previously
it was a hard-coded list of queries. See the ``_mssql.MSSQLConnection``
documentation for more details.

Thanks Marc Abramowitz.
(continues on next page)

58 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

- Added ability to handle instances of ``uuid.UUID`` passed as parameters for
SQL queries both in ``pymssql`` and ``_mssql``. (GH-209)

Thanks Marat Mavlyutov.

- Allow using `SQL Server autocommit mode`_ from ``pymssql`` at connection
opening time. This allows e.g. DDL statements like ``DROP DATABASE`` to be
executed. (GH-210)

Thanks Marat Mavlyutov.

- Documentation: Explicitly mention minimum versions supported of Python (2.6)
and SQL Server (2005).

- Incremental enhancements to the documentation.

.. _SQL Server instances: http://www.windowsazure.com/en-us/services/sql-database/

.. _Azure: https://www.windowsazure.com/

.. _SQL Server autocommit mode: http://msdn.microsoft.com/en-us/library/ms187878
→˓%28v=sql.105%29.aspx

Bug fixes

- Handle errors when calling Stored Procedures via the ``.callproc()`` pymssql
cursor method. Now it will raise a DB-API ``DatabaseException``; previously
it allowed a ``_mssql.MSSQLDatabaseException`` exception to surface.

- Fixes in ``tds_version`` ``_mssql`` connections property value

Made it work with TDS protocol version 7.2. (GH-211)

The value returned for TDS version 7.1 is still 8.0 for backward
compatibility (this is because such feature got added in times when
Microsoft documentation labeled the two protocol versions that followed 7.0
as 8.0 and 9.0; later it changed them to 7.1 and 7.2 respectively) and will
be corrected in a future release (2.2).

- PEP 249 compliance (GH-251)

Added type constructors to increase compatibility with other libraries.

Thanks Aymeric Augustin.

- pymssql: Made handling of integer SP params more robust (GH-237)

- Check lower bound value when convering integer values from to Python to SQL
(GH-238)

Internals

- Completed migration of the test suite from nose to py.test.

- Added a few more test cases to our suite.

(continues on next page)

59

pymssql Documentation, Release 2.1.4

(continued from previous page)

- Tests: Modified a couple of test cases so the full suite can be run against
SQL Server 2005.

- Added testing of successful build of documentation to Travis CI script.

- Build process: Cleanup intermediate and ad-hoc anciliary files (GH-231,
GH-273)

- setup.py: Fixed handling of release tarballs contents so no extraneous files
are shipped and the documentation tree is actually included. Also, removed
unused code.

Version 2.1.0 - 2014-02-25 - `Marc Abramowitz <http://marc-abramowitz.com/>`_
===

Features

- Sphinx-based documentation (GH-149)

Read it online at http://pymssql.org/

Thanks, Ramiro Morales!

See:

* https://github.com/pymssql/pymssql/pull/149

* https://github.com/pymssql/pymssql/pull/162

* https://github.com/pymssql/pymssql/pull/164

* https://github.com/pymssql/pymssql/pull/165

* https://github.com/pymssql/pymssql/pull/166

* https://github.com/pymssql/pymssql/pull/167

* https://github.com/pymssql/pymssql/pull/169

* https://github.com/pymssql/pymssql/pull/174

* https://github.com/pymssql/pymssql/pull/175

- "Green" support (GH-135)

Lets you use pymssql with cooperative multi-tasking systems like
gevent and have pymssql call a callback when it is waiting for a
response from the server. You can set this callback to yield to
another greenlet, coroutine, etc. For example, for gevent, you could
do::

def wait_callback(read_fileno):
gevent.socket.wait_read(read_fileno)

pymssql.set_wait_callback(wait_callback)

The above is useful if you're say, running a gunicorn server with the
gevent worker. With this callback in place, when you send a query to
SQL server and are waiting for a response, you can yield to other
greenlets and process other requests. This is super useful when you
have high concurrency and/or slow database queries and lets you use
less gunicorn worker processes and still handle high concurrency.

See https://github.com/pymssql/pymssql/pull/135
(continues on next page)

60 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

- Better error messages.

E.g.: For a connection failure, instead of:

pymssql.OperationalError: (20009, 'Net-Lib error during Connection
refused')

the dberrstr is also included, resulting in:

pymssql.OperationalError: (20009, 'DB-Lib error message 20009,
severity 9:\nUnable to connect: Adaptive Server is unavailable or
does not exist\nNet-Lib error during Connection refused\n')

See:

* https://github.com/pymssql/pymssql/pull/151

In the area of error messages, we also made this change:

execute: Raise ColumnsWithoutNamesError when as_dict=True and missing
column names (GH-160)

because the previous behavior was very confusing; instead of raising
an exception, we would just return row dicts with those columns
missing. This prompted at least one question on the mailing list
(https://groups.google.com/forum/?fromgroups#!topic/pymssql/JoZpmNZFtxM),
so we thought it was better to handle this explicitly by raising an
exception, so the user would understand what went wrong.

See:

* https://github.com/pymssql/pymssql/pull/160

* https://github.com/pymssql/pymssql/pull/168

- Performance improvements

You are most likely to notice a difference from these when you are
fetching a large number of rows.

* Reworked row fetching (GH-159)

There was a rather large amount of type conversion occuring when
fetching a row from pymssql. The number of conversions required have
been cut down significantly with these changes.
Thanks Damien, Churchill!

See:

* https://github.com/pymssql/pymssql/pull/158

* https://github.com/pymssql/pymssql/pull/159

* Modify get_row() to use the CPython tuple API (GH-178)

This drops the previous method of building up a row tuple and switches
to using the CPython API, which allows you to create a correctly sized
tuple at the beginning and simply fill it in. This appears to offer
around a 10% boost when fetching rows from a table where the data is
already in memory.
Thanks Damien, Churchill!

(continues on next page)

61

pymssql Documentation, Release 2.1.4

(continued from previous page)

See:

* https://github.com/pymssql/pymssql/pull/178

- MSSQLConnection: Add `with` (context manager) support (GH-171)

This adds `with` statement support for MSSQLConnection in the `_mssql`
module -- e.g.::

with mssqlconn() as conn:
conn.execute_query("SELECT @@version AS version")

We already have `with` statement support for the `pymssql` module.
See:

* https://github.com/pymssql/pymssql/pull/171

- Allow passing in binary data (GH-179)

Use the bytesarray type added in Python 2.6 to signify that this is
binary data and to quote it accordingly. Also modify the handling of
str/bytes types checking the first 2 characters for b'0x' and insert
that as binary data.
See:

* https://github.com/pymssql/pymssql/pull/179

- Add support for binding uuid.UUID instances to stored procedures input
params (GH-143)
Thanks, Ramiro Morales!

See:

* https://github.com/pymssql/pymssql/pull/143

* https://github.com/pymssql/pymssql/commit/1689c83878304f735eb38b1c63c31e210b028ea7

- The version number is now stored in one place, in pymssql_version.h
This makes it easier to update the version number and not forget any
places, like I did with pymssql 2.0.1

* See https://github.com/pymssql/pymssql/commit/
→˓fd317df65fa62691c2af377e4661defb721b2699

- Improved support for using py.test as test runner (GH-183)

* See: https://github.com/pymssql/pymssql/pull/183

- Improved PEP-8 and pylint compliance

Bug Fixes

- GH-142 ("Change how ``*.pyx`` files are included in package") - this
should prevent pymssql.pyx and _mssql.pyx from getting copied into the
root of your virtualenv. Thanks, @Arfrever!

* See: https://github.com/pymssql/pymssql/issues/142

(continues on next page)

62 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

- GH-145 ("Prevent error string growing with repeated failed connection
attempts.")

See:

* https://github.com/pymssql/pymssql/issues/145

* https://github.com/pymssql/pymssql/pull/146

- GH-151 ("err_handler: Don't clobber dberrstr with oserrstr")

* https://github.com/pymssql/pymssql/pull/151

- GH-152 ("_mssql.pyx: Zero init global last_msg_* vars")
See: https://github.com/pymssql/pymssql/pull/152

- GH-177 ("binary columns sometimes are processed as varchar")
Better mechanism for pymssql to detect that user is passing binary
data.

See: https://github.com/pymssql/pymssql/issues/177

- buffer overflow fix (GH-182)

* See: https://github.com/pymssql/pymssql/pull/181

* See: https://github.com/pymssql/pymssql/pull/182

- Return uniqueidentifer columns as uuid.UUID objects on Python 3

Version 2.0.1 - 2013-10-27 - `Marc Abramowitz <http://marc-abramowitz.com/>`_

* MANIFEST.in: Add "*.rst" to prevent install error: "IOError: [Errno 2] No
such file or directory: 'ChangeLog_highlights.rst'"

Version 2.0.0 - 2013-10-25 - `Marc Abramowitz <http://marc-abramowitz.com/>`_

* First official release of pymssql 2.X (`Cython`_-based code) to `PyPI`_!

* Compared to pymssql 1.X, this version offers:

* Better performance

* Thread safety

* Fuller test suite

* Support for Python 3

* Continuous integration via `Travis CI`_

* Easier to understand code, due to `Cython`_

.. _PyPI: https://pypi.python.org/pypi/pymssql/2.0.0

.. _Travis CI: https://travis-ci.org/pymssql/pymssql

.. _Cython: http://cython.org/

.. _ChangeLog: https://github.com/pymssql/pymssql/blob/master/ChangeLog

Version 2.0.0b1-dev-20130403 - 2013-04-03 - Marc Abramowitz <msabramo@gmail.com>
--

* Added tag 2.0.0b1-dev-20130403 for changeset 5d0c980ef8b8
(b2b2748f7f88)

* Fix issue 118 ("datetime conversion to sql is not converting
(continues on next page)

63

pymssql Documentation, Release 2.1.4

(continued from previous page)

sub-seconds correctly") - Pad microseconds to 3 digits so it gets
converted correctly. Thanks, Ken Robbins (kenneth.robbins at gmail)!
(5d0c980ef8b8)

* Make tests/test_queries.py actually run tests. It looked like it was
half-finished and not working. This fills it out and makes it work and
actually test a few things. (5373541eb899)

* setup.py: Make it possible to use `python setup.py test`
(3c32acb41251)

* Bunch of fixes to eliminate build/install warnings (adb0fc75bfd0,
fe6cb9aa5120, 446f0005e638, e8d4b19d87b1, 90b2aa2ea01f, 7bb29af4b22c)

* Add `pymssql.get_dbversion` function that wraps the dbversion
function in FreeTDS. (1158a5d2be9c)

* Add a `get_freetds_version` function (a4286224dcf2)

* Fix issue 109 ("Failure to pass Unicode characters to callproc;
failing test:
tests.test_sprocs.TestCallProcFancy.

→˓testCallProcWithUnicodeStringWithRussianCharacters"):
Skip test because it fails with some versions of FreeTDS but passes
with others. (d05341273673)

* Fix issue 116 ("A few tests fail if running on a system that has SQL
Server available on port 1433") (0fc4086447fe)

* Modify tests/test_config.py to use server='dontnameyourserverthis'
when doing various tests so it doesn't try to connect to a SQL
Server listening on localhost:1433 (0fc4086447fe)

* tox.ini: Add {posargs:-w tests -v} to nosetests invocation so that
we can pass arguments to tox -- e.g.: to run only specific tests
(a105878d500d)

* tox.ini: Add "ipdb" to deps, because the IPython debugger is very
nice for debugging why tests are failing (be9ee40156cb)

* Fix issue 114 ("Fix SP name handling in threaded test so we can
actually run it.") (6ac2b75747ad)

* Fix issue 100 (Error when executing setup.py {build,develop} on a
system with no setuptools: "name 'STDevelopCmd' is not defined")
(5222ee37b2ab)

* Issue 45 ("Make SQLAlchemy tests part of our testing process"): Add
tests/run_sqlalchemy_tests.py for running the SQLAlchemy test suite
with pymssql using the server configured in tests/tests.cfg
(999d9dbe791b)

* Fix issue 92 ("Cursor fetch* methods return redundant keys for
column names and column numbers.") (08ae783880dd)

* tests/test_connection_as_dict.py:
bug 18 ("FetchAll fails to return rows when running against a
connection instantiated with as_dict=True."): Add a test which
illustrates that the issue is resolved. (058d761cc761)

* Fix issue 60 ("cursor.execute raise UnicodeDecodeError if query and
params in unicode"): Add patch from tonal.promsoft and add tests.
(49210c03a6cf)

* Add *.c to MANIFEST.in so they get included in sdist and end-users
don't need to run Cython. (25c1a84aac0c)

* Fix issue 56 ("callproc do not accept None and unicode string in
parameters"): Add patch from tonal.promsoft and add tests
(939eb7939136)

* version 2.0.0b1-dev-20130403

Version 2.0.0b1-dev-20130108 - 2013-01-08 - Marc Abramowitz <msabramo@gmail.com>
--

* change: put compiled FreeTDS for Windows in pymmsql source, add build
(continues on next page)

64 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

instructions to README, better Visual Studio support (#61)
+ feature: support hostname, port, tds_version connect params without freetds.

→˓config
+ feature: make pymssql.Cursor.rownumber give accurate results for executemany()
+ feature: bundle FreeTDS libraries & use static libary includes to avoid

most end-user-developers needing to mess with FreeTDS

* change: speed up handling of tuples/lists when quoting (dieterv77)
- bug #46: better handling for byte strings that don't represent ascii data
- bug: custom param handling avoids bugs when '%' is used in the SQL (modulus

→˓operator)
- bug: fix pymssql.DBAPIType so that comparisons work as expected
- bug: fetch*() functions would erroneously raise OperationalError when rows

→˓exhausted
- bug #47: fix threaded tests crashing
- bug #79: fix prevision problem with floats (dieterv77)

- bug #14: Add setup.py voodoo that undoes setuptools monkeypatching
that causes `pip install` to not work with setuptools unless pyrex
is installed. (86a73a19d5bd)
- bug #106 (OS X: "Symbol not found: _dbadata" error when importing
pymssql): Fix OS X build by modifying setup.py so that on OS X we
don't attempt to link with the bundled FreeTDS *Linux* library.
(88d15d125586)
+ feature: Add support for running tox (http://tox.testrun.org/) to
test across multiple Python versions. (5fa7a6548b31)
- bug #44: Remove test_long_identifiers from test_sqlalchemy.py
because SQLAlchemy removed the 30 character limit on identifiers.
(6585d44eea33)
- feature: Add setup.py voodoo so that Cython can automatially be
downloaded if it's not installed instead of an ImportError
(bb459dd7fd7e)
- bug #105: Link with librt on Unix platforms that have it (like
Linux, but not FreeBSD or OS X) to prevent 'undefined symbol:
clock_gettime' error when importing pymssql. (2b255b1c035f)

Tue Nov 02 09:33:00 2010 Damien Churchill <damoxc@gmail.com>

* _mssql.pyx:
+ feature: add support for nullable ints and nullable bits in

stored procedure parameters.
+ feature: add support for positional parameters in stored

procedures.
+ bugfix: add support for using type subclasses as parameters
+ bugfix: correctly report incorrect logins.
+ feature: add support for setting the application name
+ bugfix: accept more than just the decimal.Decimal type for

money and decimal parameters.
+ bugfix: fix raising exceptions from convert_python_value()
+ bugfix: fix binding parameters of int type when larger than

2^31 - 1 (raise exception).
+ bugfix: use sprintf rather than python strings in the msg_handler
+ bugfix: use sprintf rather than python strings in the err_handler
+ bugfix: make compatible with Cython 0.13
+ feature: remove the trusted parameter to connect()
+ bugfix: fix issue 15, not setting implicit_transactions on connect
+ bugfix: fix issue 32, setting the wrong hostname on login

* pymssql.pyx:
+ feature: add initial support for callproc()
+ feature: add support for setting the application name

(continues on next page)

65

pymssql Documentation, Release 2.1.4

(continued from previous page)

+ bugfix: fix issue #7, thanks has.temp3
+ bugfix: fix issue #10, rowcount property being incorrect
+ bugfix: make compatible with Cython 0.13
+ feature: remove the trusted parameter to connect()
+ feature: add returnvalue property with the result of a callproc()

call.
+ feature: fix raising exceptions when args[0] is not a string

* MANIFEST.in:
+ feature: include the tests
+ bugfix: include ez_setup.py

* setup.py:
+ bugfix: fix issue #8, ZipFile don't has the attribute

'extractall' error for python2.5

* version 1.9.909

Wed Apr 28 11:10:00 2010 Damien Churchill <damoxc@gmail.com>

* MANIFEST.in:
+ bugfix: fix recursive-include for .pyrex

* version 1.9.908

Wed Apr 21 16:02:00 2010 Damien Churchill <damoxc@gmail.com>

* MANIFEST.in:
+ bugfix: include missing .pyrex folder

* version 1.9.907

Fri Apr 09 13:16:00 2010 Damien Churchill <damoxc@gmail.com>

* setup.py:
+ bugfix: include hack faking that pyrex is installed to workaround

a bug in setuptools.

* _mssql.pyx:
+ bugfix: add support for connecting using "." and "(local)"

* pymssql.pyx:
+ feature: add the output type to be used with callproc()
+ depreciate: the dsn keyword param to pymssql.connect()
+ feature: add the get/set_max_connections to pymssql

* sqlfront.pxd:
+ feature: tidy up and remove all unused methods.

* version 1.9.906

Mon Nov 23 13:37:00 2009 Damien Churchill <damoxc@gmail.com>

* _mssql.pyx:
+ feature: add support for varbinary types
+ feature: add support for passing in charset to _quote_data
+ bugfix: rename MSSQLConnection.next_result to

MSSQLConnection.nextresult as before
+ bugfix: set the charset upon login
+ feature: rewrite _remove_locale using C types instead, 20x faster
+ feature: add a charset param to quote_data and relating funcs that

allows the charset to be specified for unicode encodes.

* pymssql.pyx:
+ feature: add DSN support that was missing
+ bugfix: fix rowcount property

* sqlfront.pxd:
add DBSETLCHARSET

* tests:
+ feature: add test for multiple results

* setup.py:
(continues on next page)

66 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

+ feature: fix building on windows
+ feature: clean generated C files in the clean command
+ feature: automatically extract freetds.zip on windows when

building

* version 1.9.903

Fri Nov 20 13:03:00 2009 Damien Churchill <damoxc@gmail.com>

* mssqldbmodule.c: deprecated in favour of _mssql.pyx

* pymssql.py: deprecated in favour of pymssql.py
+ feature: added support for uniqueidentifier types
+ feature: added support for calling remote procedures programmatically

* version 1.9.901

Tue May 12 15:43:00 2009 Andrzej Kukula <akukula@gmail.com>

* mssqldbmodule.c:
+ bugfix: pymssql didn't return second, third etc. result set

in case of multi-result statements, e.g. 'SELECT 1; SELECT 2',
thanks Damien Churchill <damoxc@users.sourceforge.net>

Wed Apr 29 19:31:00 2009 Andrzej Kukula <akukula@gmail.com>

* mssqldbmodule.c:
+ fixed possible memory leak, thanks Evgeny Cherkashin

<eugene.adm@gmail.com>

Tue Apr 23 23:00:00 2009 Andrzej Kukula <akukula@gmail.com>
+ bugfix: fixed rare quoting bug in select_db()
+ feature: added 'max_conn' parameter to pymssql.connect() and
_mssql.connect() which defaults to 25, thanks Daniel Watrous
<dwmaillist@gmail.com>

* nagios-plugin update - thanks Josselin Mouette <joss@debian.org>:
+ Include a -P port option, to avoid having to passing it with the

host name
+ Fix the encoding of the comments; utf-8 is the declared encoding

of the file and must be followed
+ Fix a typo in the SQL syntax
+ Connect explicitly to the "master" database (required since 1.0.0)
+ Improve perfdata output.

* version 1.0.2

Tue Apr 21 22:56:00 2009 Andrzej Kukula <akukula@gmail.com>

* mssqldbmodule.c:
+ bugfix in format_and_run_query(): query strings were sometimes

overwritten with garbage due to DECREF in wrong place; thanks
Igor Nazarenko <igor.n.nazarenko@gmail.com>

+ bugfix in get_result(): if a query batch contained DECLARE or
possibly other T-SQL statements, no results were returned
thanks Kay Schluehr <schluehrk@users.sourceforge.net>

+ bugfix in execute_scalar(): check if there are any columns in result
+ bugfix: check for FAIL after each dbnextrow()
+ feature: Add support for bigint - #2660972; thanks Alexandr

Zamaraev <shura_zam@users.sourceforge.net>

* pymssql.c:
+ bugfix in execute(): if execute is called without second argument,

don't treat '%' in query string as formatting character; restored
compatibility with common sense and with pymssql < 1.0.0; thanks
Corey Bertram <corey.bertram@monitoredsecurity.com>,
Wes McKinney <wesmckinn@gmail.com>

(continues on next page)

67

pymssql Documentation, Release 2.1.4

(continued from previous page)

+ feature: it is possible to specify 'as_dict' to pymssql.connect
and rows will be returned as dictionaries instead of tuples;
thanks Daniel Watrous <dwmaillist@gmail.com>

Thu Jan 30 18:36:00 2009 Andrzej Kukula <akukula@gmail.com>

* mssqldbmodule.c:
+ Pyssize_t error on x64 - thanks Josselin Mouette <joss@debian.org>
+ critical charset updates, thanks Josselin Mouette <joss@debian.org>
+ more Py_ssize_t updates, further code cleanups
+ fixed some compiler warnings

* pymssql.py:
+ execute() failed, thanks Josselin Mouette <joss@debian.org>
+ critical charset updates, thanks Josselin Mouette <joss@debian.org>
+ removed warnings, users don't want them and they are not 'MUST'

priority in DB-API spec

* nagios-plugin: introducted Nagios plugin, thanks Julien Blache
and Josselin Mouette

* version 1.0.1

Thu Jan 29 19:23:00 2009 Andrzej Kukula <akukula@gmail.com>

* version 1.0.0

* so many changes I'll not put them here, I'll document
changes from now on.

Mon Sep 25 20:18:00 2006 Andrzej Kukula <akukula@gmail.com>

* setup.py: fix for Fink (http://Fink.SF.Net) under OS X (thanks
Terrence Brannon <metaperl@gmail.com>)

Sun Sep 24 10:44:00 2006 Andrzej Kukula <akukula@gmail.com>

* setup.py:
+ it can now dynamically determine the path to SQL 2000 Developer

Tools, if win32api and win32con modules are available
+ simple Python version check to prevent most frequently asked

question
+ version 0.8.0

Wed Sep 13 01:20:00 2006 Andrzej Kukula <akukula@gmail.com>

* mssqldbmodule.c:
+ corrected misspellings in docstrings
+ fixed segfault on connection close with Python 2.5; thanks

Justin Francis <jfrancis@pivotalpayments.com>

* pymssql.py:
+ fixed two minor DB-API incompatibilities (thanks Matthew Good

<matt@matt-good.net>)
+ fixed datetime quoting (thanks Jan Finell <jfinell@regionline.fi>)

* pymssql should be able to build on cygwin (thanks
rob@robnet.com)

* docstring fixes, webpage doc updates

Tue May 15 03:18:00 2006 Jooncheol Park <exman@users.sourceforge.net>

* setup.py, PKG-INFO, README: license change to LGPL

Wed Mar 15 08:18:00 2006 Andrzej Kukula <akukula@users.sourceforge.net>

* pymssql.py: fixed datetime issue (thanks Jan Finell
<jfinell@regionline.fi>)

Fri Feb 24 16:11:00 2006 Andrzej Kukula <akukula@users.sourceforge.net>
(continues on next page)

68 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

* mssqldbmodule.c: fixed typos in docstrings (thanks Konstantin
Veretennicov)

Tue Dec 27 15:14:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: bug fixes, improvements and cleanups:
+ implemented set_login_timeout() and set_query_timeout() functions;
+ eliminated unnecessary ODBC code
+ cleaned up exception code and improved exception handling,

SF bug #1335560
+ web page now correctly mentions FreeTDS 0.63 as the minimal

required version
+ stdmsg() method is now deprecated; all errors are concatenated

in errmsg()
+ implemented min_error_severity: all errors at or above that

level will raise the exception; if the severity is lower, they
will just accumulate in errmsg()

+ added setting coltype to NUMBER for float types (found by
Jakub Labath)

* setup.py:
+ reincarnated ntwdblib.dll which turned out to be redistributable

after all; pymssql includes the latest version that allows
connecting to SQL 2005; eliminated some stupid notes from the
web page and will ease set up process for users

* apitest_mssql.py: new file
+ provided by Jakub Labath, this file performs some basic DB-API

compliance tests; it immediately triggered the unicode bug

* version 0.7.4

Sat Oct 22 19:41:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: multithreading improvements - from now on pymssql
is thread-safe, it releases GIL in proper places; idea and initial
patch by John-Peter Lee (thanks very much!)

Mon Sep 5 23:29:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* setup.py: fixed an installation issue regarding importing pymssql
that imports _mssql which isn't installed, and blows up with
AttributeError... (thanks Vsevolod Stakhov)

* version 0.7.3

Mon Sep 5 00:32:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* version 0.7.2

Sun Sep 4 23:12:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: improvements and cleanups:
+ improved error handling: if the db function fails, the exception

is thrown automatically and immediately; no need to check
return value of conn.query(), just catch _mssql.error

+ improved error handling: it is possible that MS SQL calls message
handler twice; now _mssql catches and reports both of them at once

+ improved error handling: in some cases _mssql.query() returns
success but the results are invalid; now it is handled properly
(example "SELECT CAST(1234.5678 AS NUMERIC(4,2))")

+ added proper connection initialization: a number of SET statements
are executed upon connection setup to set sensible SQL behaviour;
see source for details; one needs to unset them if needed

+ implemented min_{message|error}_severity as it is in php_mssql
(continues on next page)

69

pymssql Documentation, Release 2.1.4

(continued from previous page)

to ignore unimportant errors; it's work in progress
+ new function rmv_lcl() initially by Mark Pettit, to strip locale

crap from MONEY values converted to SQLCHAR while generating
Decimal object

+ other small fixes, improvements and janitorial work

Tue Aug 30 00:16:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: new features:
+ large numbers (DECIMAL, NUMERIC, MONEY, SMALLMONEY) are returned

as Decimal object -- this helps maintain accuracy; thanks to
Mark Pettit for help

+ COMPUTE clauses are supported (it wouldn't fetch data for those
columns before)

+ ROWID type has been removed from _mssql module
+ new type DECIMAL to denote Decimal objects in result set

Mon Aug 29 21:59:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: some improvements:
+ BIT values are returned as Python bool objects, suggested by

Mark Pettit
+ close() method returns None on success (not to be used at all)

and throws exception on error
+ fixed use of uninitialized value when parsing SMALLDATETIME
+ another round of performance improvements in GetRow() - eliminated

unnecessary data conversions and unneeded DB-Lib calls
+ janitorial fixes

Mon Aug 22 04:35:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: massive diff:
+ fixed bug with fetching query results of some data types;

found by Mark Pettit
+ fixed IndexError when query returns no rows; patch by Jakub Labath
+ rewritten function GetRow() that fetches query results: performance

improvements, better handling of result data types; datetime
is returned as datetime object instead of string (it's more
consistent with other values -- and more pythonic :)

+ eliminated DetermineRowSize()
+ cleanups: _mssql_init() further improvements w.r.t. Python API
+ janitorial fixes
+ added licensing information

* pymssql.py: docstring changed to look nicer with help()

* version 0.7.2

Thu Aug 11 02:12:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: improved module init function: added doc string,
made compliant with Python 2.0+ module interface (there are no more
coredumps on help())

* mssqldbmodule.c: documented that _mssql.connect() is not portable
between FreeTDS-dependent platforms and Windows platforms; documented
host:port usage

Sat Jul 23 14:20:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

(continues on next page)

70 Chapter 14. Change log

pymssql Documentation, Release 2.1.4

(continued from previous page)

* mssqldbmodule.c: eliminated problems with Python exiting upon
invalid login credentials with FreeTDS - the culprit was INT_EXIT
and FreeTDS setting DBDEAD

* mssqldbmodule.c: added better error messages (esp. on Windows)

* mssqldbmodule.c: added msg_handler and err_handler debugging

* 0.7.1 packages re-released

Fri Jul 22 03:19:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: major change; module revamped to support some
more builtin Python features; some redundant code removed; memset()
removed as there were no benefits but performance decrease

* mssqldbmodule.c: help(_mssql) works; help for conn object works too

* pymssql.py: _quote: removed escaping backslash -- with MSSQL it is
only needed to escape single quotes by duplicating them

* pymssql.py: pymssqlCnx class: added a few checks to properly support
DB-API 2.0 (see .close() in PEP 249)

* version 0.7.1

Wed Jul 20 22:12:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: removed the workaround for date issue; there were
more problems than benefits

* mssqldbmodule_tds.c: removed

* some more cleanups and corrections

Tue Jul 19 14:23:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: major change; many portability problems fixed

* mssqldbmodule.c: eliminated port setting; this is job for freetds.conf

* mssqldbmodule_tds.c: module to get FreeTDS compile-time settings

* build fixes; now it builds cleanly on FreeBSD, Linux and Windows

* version 0.7.0

Mon Jul 18 15:21:00 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* mssqldbmodule.c: fix build on Windows: changed MS_WIN32 to MS_WINDOWS
reported by Mirek Rusin <mirek.rusin@onet.pl>

* mssqldbmodule.c: many small fixes and cleanups; janitorial fixes;
indentation using indent(1L)

* ChangeLog fix! 'mysql' was mentioned instead of 'mssql'...

Fri Feb 25 02:15:01 2005 Andrzej Kukula <akukula@users.sourceforge.net>

* Fix build on Windows with Visual Studio .NET 2003
and MS SQL Server 2000 SP3a

* mssqldbmodule.c: Fix compile error with Visual Studio .NET 2003

* mssqldbmodule.c: Add detection/workaround for date issue caused by
different dbdatecrack() prototypes

* README.freetds: describe dbdatecrack()-related issue

Thu Feb 24 02:03:14 2005 Alejandro Dubrovsky <alito@organicrobot.com>

* Export column type names

* mssqldbmodule.c: Return column type information for headers

* Use type information to make cursor.description conform to API 2

(continues on next page)

71

pymssql Documentation, Release 2.1.4

(continued from previous page)

2005-02-17 Alejandro Dubrovsky <alito@organicrobot.com>

* Apply patch by Rob Nichols to get cursor.description closer to API 2
→˓compliance

2005-02-08 Alejandro Dubrovsky <alito@organicrobot.com>

* Message changes in mssqldbmodule.c (typos, grammar, etc)

2005-02-07 Alejandro Dubrovsky <alito@organicrobot.com>

* Added ChangeLog

* API Change: add 6th parameter 'port' to connect

* Don't close connection on cursor close (noted by Alberto Pastore on the
→˓sourceforge project page)

* Make cursor.fetchone comply with DB-SIG return a tuple, not a list of
→˓tuples (report and patch by Chris Curvey)

72 Chapter 14. Change log

CHAPTER 15

TODO

15.1 Documentation

Todo: Add an example of invoking a Stored Procedure using _mssql.

(The original entry is located in /home/docs/checkouts/readthedocs.org/user_builds/pymssql/checkouts/2.1.4/docs/_mssql_examples.rst,
line 141.)

73

pymssql Documentation, Release 2.1.4

74 Chapter 15. TODO

Python Module Index

_
_mssql, 27

p
pymssql, 19

75

pymssql Documentation, Release 2.1.4

76 Python Module Index

Index

Symbols
__full_version__ (in module _mssql), 27
__full_version__ (in module pymssql), 19
__iter__() (_mssql.MSSQLConnection method), 31
__iter__() (pymssql.Cursor method), 24
__version__ (in module _mssql), 27
__version__ (in module pymssql), 19
_mssql (module), 27

A
apilevel (in module pymssql), 19
autocommit() (pymssql.Connection method), 22

B
bind() (_mssql.MSSQLStoredProcedure method), 32

C
cancel() (_mssql.MSSQLConnection method), 30
charset (_mssql.MSSQLConnection attribute), 29
close() (_mssql.MSSQLConnection method), 30
close() (pymssql.Connection method), 22
close() (pymssql.Cursor method), 23
ColumnsWithoutNamesError, 25
commit() (pymssql.Connection method), 22
connect() (in module pymssql), 20
connected (_mssql.MSSQLConnection attribute), 29
connection (_mssql.MSSQLStoredProcedure attribute),

32
Connection (class in pymssql), 22
connection (pymssql.Cursor attribute), 23
Cursor (class in pymssql), 23
cursor() (pymssql.Connection method), 22

D
DatabaseError, 24
DataError, 24
debug_queries (_mssql.MSSQLConnection attribute), 30

E
Error, 24
execute() (_mssql.MSSQLStoredProcedure method), 32
execute() (pymssql.Cursor method), 23
execute_non_query() (_mssql.MSSQLConnection

method), 30
execute_query() (_mssql.MSSQLConnection method),

30
execute_row() (_mssql.MSSQLConnection method), 31
execute_scalar() (_mssql.MSSQLConnection method),

30
executemany() (pymssql.Cursor method), 23

F
fetchall() (pymssql.Cursor method), 24
fetchmany() (pymssql.Cursor method), 24
fetchone() (pymssql.Cursor method), 23

G
get_dbversion() (in module pymssql), 21
get_header() (_mssql.MSSQLConnection method), 31
get_max_connections() (in module _mssql), 27
get_max_connections() (in module pymssql), 21

I
identity (_mssql.MSSQLConnection attribute), 29
init_procedure() (_mssql.MSSQLConnection method),

31
IntegrityError, 25
InterfaceError, 24
InternalError, 25

L
lastrowid (pymssql.Cursor attribute), 23
login_timeout (in module _mssql), 27

M
message (_mssql.MSSQLDatabaseException attribute),

33

77

pymssql Documentation, Release 2.1.4

min_error_severity (in module _mssql), 27
MSSQLConnection (class in _mssql), 28
MSSQLDatabaseException, 33
MSSQLDriverException, 33
MSSQLStoredProcedure (class in _mssql), 32

N
name (_mssql.MSSQLStoredProcedure attribute), 32
next() (_mssql.MSSQLConnection method), 31
next() (pymssql.Cursor method), 24
nextresult() (_mssql.MSSQLConnection method), 31
nextset() (pymssql.Cursor method), 24
NotSupportedError, 25
number (_mssql.MSSQLDatabaseException attribute),

33

O
OperationalError, 24

P
parameters (_mssql.MSSQLStoredProcedure attribute),

32
paramstyle (in module pymssql), 19
ProgrammingError, 25
pymssql (module), 19
Python Enhancement Proposals

PEP 249#operationalerror, 24
PEP 440, 19
PEP 513, 1

Q
query_timeout (_mssql.MSSQLConnection attribute), 29

R
rollback() (pymssql.Connection method), 23
rowcount (pymssql.Cursor attribute), 23
rownumber (pymssql.Cursor attribute), 23
rows_affected (_mssql.MSSQLConnection attribute), 30

S
select_db() (_mssql.MSSQLConnection method), 31
set_max_connections() (in module _mssql), 27
set_max_connections() (in module pymssql), 21
set_msghandler() (_mssql.MSSQLConnection method),

31
set_wait_callback() (in module pymssql), 22
setinputsizes() (pymssql.Cursor method), 24
setoutputsize() (pymssql.Cursor method), 24
severity (_mssql.MSSQLDatabaseException attribute),

33
StandardError, 24
state (_mssql.MSSQLDatabaseException attribute), 33

T
tds_version (_mssql.MSSQLConnection attribute), 30
tds_version_tuple (_mssql.MSSQLConnection attribute),

30
threadsafety (in module pymssql), 19

V
VERSION (in module _mssql), 27
VERSION (in module pymssql), 19

W
Warning, 24

78 Index

	Introduction
	Getting started
	Architecture
	Supported related software
	Install
	Project Discussion
	Project Status
	Current Development

	pymssql examples
	Basic features (strict DB-API compliance)
	Connecting using Windows Authentication
	Iterating through results
	Important note about Cursors
	Rows as dictionaries
	Using the with statement (context managers)
	Calling stored procedures
	Using pymssql with cooperative multi-tasking systems

	_mssql examples
	Quickstart usage of various features
	An example of exception handling
	Custom message handlers

	Release notes
	pymssql 2.0.0

	FreeTDS
	Installation
	Configuration

	pymssql module reference
	Module-level symbols
	Functions
	Connection class
	Cursor class
	Exceptions

	_mssql module reference
	Module-level symbols
	Functions
	MSSQLConnection class
	MSSQLStoredProcedure class
	Module-level exceptions

	Migrating from 1.x to 2.x
	str vs. unicode
	Handling of uniqueidentifier columns
	Arguments to pymssql.connect
	Parameter substitution

	Frequently asked questions
	Cannot connect to SQL Server
	Returned dates are not correct
	Queries return no rows
	Results are missing columns
	pymssql does not unserialize DATE and TIME columns to datetime.date and datetime.time instances
	Shared object “libsybdb.so.3” not found
	“DB-Lib error message 20004, severity 9: Read from SQL server failed” error appears
	Unable to use long username and password
	More troubleshooting

	Building and developing pymssql
	Building
	Testing

	FreeTDS and dates
	Summary
	Details

	Connecting to Azure SQL Database
	Docker
	Change log
	TODO
	Documentation

	Python Module Index

